Sur l'approximation des solutions des équations à l'aide des suites à éléments dans un espaces de Banach
On the approximation of solutions of equations using sequences with elements in a Banach space
Abstract
Let \(X\) be a Banach space, \(Y\) a normed space \(P:X\rightarrow Y\) a nonlinear operator and the equation \(P\left( x\right) =0\) with solution \(x^{\ast}\). Consider \(\Sigma:=\left( x_{n}\right) _{n\geq0}\) a sequence from \(X\) and define the convergence order of \(\Sigma\) with respect to the solution of equation \(P\left( x\right) =0\). We give a general result with sufficient conditions such that the sequence \(\Sigma\) converge to the solution \(x^{\ast}\) with a given convergence order.
Downloads
References
Ghinea, Monique, Sur la résolution des équations opérationnelles dans les espaces de Banach. (French) Rev. Française Traitement Information Chiffres 8 1965 3-22, MR0183111.
Păvăloiu, I., Sur les procédés itératifs à un ordre élevé de convergence. (French) Mathematica (Cluj) 12(35) (1970), 309-324, MR0339486.
Traub, J. F., Iterative methods for the solution of equations. Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xviii+310 pp., MR0169356.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.