Best approximation by Chebyshevian splines and generalized Lipschitz spaces

Authors

  • Karl Scherer Lehursthul A fur Matematik Technische Hocschule Aachen, Germany
Abstract views: 167

Abstract

Not available.

Downloads

Download data is not yet available.

References

Butzer, Paul L., Berens, Hubert, Semi-groups of operators and approximation. Die Grundlehren der mathematischen Wissenschaften, Band 145 Springer-Verlag New York Inc., New York 1967 xi+318 pp., MR0230022.

Jerome, Joseph W., On uniform approximation by certain generalized spline functions. J. Approximation Theory 7 (1973), 143-154, MR0397248, https://doi.org/10.1016/0021-9045(73)90061-0

Johnen, H., Inequalities connected with the moduli of smoothness. Mat. Vesnik 9(24) (1972), 289-303, MR0325868.

Karlin, Samuel, Total positivity. Vol. I. Stanford University Press, Stanford, Calif 1968 xii+576 pp., MR0230102.

DeVore, R., Richards, F., Saturation and inverse theorems for spline approximation. Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972), pp. 73-82. Internat. Ser. Numer. Math., Vol. 21, Birkhäuser, Basel, 1973, MR0372491.

DeVore, R.; Richards, F., The degree of approximation by Chebyshevian splines. Trans. Amer. Math. Soc. 181 (1973), 401-418, MR0336160, https://doi.org/10.1090/s0002-9947-1973-0336160-9

Scherer, Karl Characterization of generalized Lipschitz classes by best approximation with splines. SIAM J. Numer. Anal. 11 (1974), 283-304, MR0358157, https://doi.org/10.1137/0711027

Downloads

Published

1976-02-01

How to Cite

Scherer, K. (1976). Best approximation by Chebyshevian splines and generalized Lipschitz spaces. Anal. Numér. Théor. Approx., 5(1), 87–95. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1976-vol5-no1-art9

Issue

Section

Articles