Best approximation by Chebyshevian splines and generalized Lipschitz spaces
Abstract
Not available.Downloads
References
Butzer, Paul L., Berens, Hubert, Semi-groups of operators and approximation. Die Grundlehren der mathematischen Wissenschaften, Band 145 Springer-Verlag New York Inc., New York 1967 xi+318 pp., MR0230022.
Jerome, Joseph W., On uniform approximation by certain generalized spline functions. J. Approximation Theory 7 (1973), 143-154, MR0397248, https://doi.org/10.1016/0021-9045(73)90061-0
Johnen, H., Inequalities connected with the moduli of smoothness. Mat. Vesnik 9(24) (1972), 289-303, MR0325868.
Karlin, Samuel, Total positivity. Vol. I. Stanford University Press, Stanford, Calif 1968 xii+576 pp., MR0230102.
DeVore, R., Richards, F., Saturation and inverse theorems for spline approximation. Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972), pp. 73-82. Internat. Ser. Numer. Math., Vol. 21, Birkhäuser, Basel, 1973, MR0372491.
DeVore, R.; Richards, F., The degree of approximation by Chebyshevian splines. Trans. Amer. Math. Soc. 181 (1973), 401-418, MR0336160, https://doi.org/10.1090/s0002-9947-1973-0336160-9
Scherer, Karl Characterization of generalized Lipschitz classes by best approximation with splines. SIAM J. Numer. Anal. 11 (1974), 283-304, MR0358157, https://doi.org/10.1137/0711027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.