Quasiconformality and boundary correspondence
Abstract
Not available.Downloads
References
Caraman, Petru, n-dimensional quasiconformal (QCf) mappings. Edit. Acad. R.S.Române, Bucureşti 1968: "Abacus Press" Kent and Edit. Acad. R.S.Române 1974 (in Romanian).
Caraman, Petru, p-capacity and p-modulus. Rev. Roumaine Math. Pures Appl. (in print).
Fuglede, Bent, Extremal length and functional completion. Acta Math. 98 1957 171-219, MR0097720, https://doi.org/10.1007/bf02404474
Gehring, F. W., Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 1962 353-393, MR0139735, https://doi.org/10.1090/s0002-9947-1962-0139735-8
Gehring, F. W., Väisälä, J., The coefficients of quasiconformality of domains in space. Acta Math. 114 1965 1-70, MR0180674, https://doi.org/10.1007/bf02391817
Reade, Maxwell, On quasi-conformal mappings in three space. (Preliminary report). Bull. Amer. Math. Soc. 63, 193, 1957.
Strovick, David, The boundary correspondence of a quasiconformal mapping in space. Math.Research Center US Army. The Univ. of Wisconsin. MRC Technical Suymmary Report 426, 1-8, 1963.
Väisälä, Jussi, On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A I No. 298 1961 36 pp., MR0140685.
Wallin, Hans, α-capacity and LP-classes of differentiable functions. Arkiv för Math.5, 331-341, 1964.
Ziemer, William P., Extremal length and p-capacity. Michigan Math. J. 16 1969 43-51, MR0247077, https://doi.org/10.1307/mmj/1029000164
Zorič, V., Boundary properties of a class of mappings in space. (Russian) Dokl. Akad. Nauk SSSR 153 1963 23-26, MR0171013.
Zorič, V., Determination of boundary elements by means of sections. (Russian) Dokl. Akad. Nauk SSSR 164 1965 736-739, MR0213554.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.