Antiproximinal sets in Banach spaces of continuous functions

Authors

  • Ş. Cobzaş Tiberiu Popoviciu Institute of Numerical analysis, Romanian Academy

Abstract

Not available.

Downloads

Download data is not yet available.

References

Amir, D., Continuous functions' spaces with the bounded extension property. Bull. Res. Council Israel Sect. F 10F 1962 133-138 (1962), MR0143026.

S. Cobzas - (in Russian).

Danford, N., Švarc, Dž., Lineĭnye operatory. Chast' I: Obshchaya teoriya. (Russian) [Linear operators. Part I: General theory] Izdat. Inostran. Lit., Moscow 1962 895 pp., MR0216303.

Edelstein, M., Thompson, A. C., Some results on nearest points and support properties of convex sets in c0. Pacific J. Math. 40 (1972), 553-560, MR0308741, https://doi.org/10.2140/pjm.1972.40.553

Holmes, Richard B., A course on optimization and best approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin-New York, 1972. viii+233 pp., MR0420367.

Klee, Victor, Remarks on nearest points in normed linear spaces. 1967 Proc. Colloquium on Convexity (Copenhagen, 1965) pp. 168-176 Kobenhavns Univ. Mat. Inst., Copenhagen, MR0223859.

Phelps, R. R., Some subreflexive Banach spaces. Arch. Math. 10 1959 162-169, MR0107162, https://doi.org/10.1007/bf01240781

Semadeni, Zbigniew, Banach spaces of continuous functions. Vol. I. Monografie Matematyczne, Tom 55. PWN---Polish Scientific Publishers, Warsaw, 1971. 584 pp. (errata insert)., MR0296671.

Sierpiński,W., Cardinal and ordinal numbers. Second revised edition. Monografie Matematyczne, Vol. 34 Państowe Wydawnictwo Naukowe, Warsaw 1965 491 pp., MR0194339.

Singer, Ivan, Bases in Banach spaces. I. Die Grundlehren der mathematischen Wissenschaften, Band 154. Springer-Verlag, New York-Berlin, 1970. viii+668 pp., MR0298399.

(in Russian)

Downloads

Published

1976-08-01

How to Cite

Cobzaş, Ş. (1976). Antiproximinal sets in Banach spaces of continuous functions. Anal. Numér. Théor. Approx., 5(2), 127–143. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1976-vol5-no2-art2

Issue

Section

Articles