On Fourier series
Abstract
Not available.Downloads
References
Bernstein, S. N., Sur un procédé de sommation des séries trigonométriques. Comptes Rendus 191, (1930) 976-979.
Hardy, G. H., Littlewood, J. E., A convergence criterion for Fourier series. Math. Z. 28 (1928), no. 1, 612-634, MR1544980, https://doi.org/10.1007/bf01181186
Hardy, Godfrey Harold, Littlewood, John Edensor, Some new convergence criteria for Fourier series. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3 (1934), no. 1, 43-62, MR1556721.
Izumi, S., Sunouchi, G., Notes on Fourier analysis. XLVIII. Uniform convergence of Fourier series. Tôhoku Math. J. (2) 3, (1951). 298-305, MR0047172, https://doi.org/10.2748/tmj/1178245485
Névai, G.P., A note on a G.I. Natanson's theorem (in Russian), Acta Math. Acad. Sci. Hung. 23, (1972), 219-221.
Névai, G.P., Notes on trigonometric interpolation and Fourier sums (in Russian), Studia Sci. Math. Hung.
Névai, G. P., The Dini-Lipschitz test. (Russian) Acta Math. Acad. Sci. Hungar. 24 (1973), 349-351, MR0338651, https://doi.org/10.1007/bf01958046
Nikolskiî, S.M., Asymptotic estimation of the remainder term in case of approximation by Fourier sums (in Russian), Doklady AN SSSR 32, (1941), 386-389.
Rogosinski, Werner, Uber die Abschnitte trigonometrischer Reihen. (German) Math. Ann. 95 (1926), no. 1, 110-134, MR1512267, https://doi.org/10.1007/bf01206600
Salem, R., Zygmund, A., The approximation by partial sums of Fourier series. Trans. Amer. Math. Soc. 59, (1946). 14-22, MR0015538, https://doi.org/10.1090/s0002-9947-1946-0015538-0
Žuk, V. V., On representation of continuous 2π periodic function by linear methods of summation (in Russian), Izvestija Vysih Ucebnyh Zavedenii, ser. Mat. 8 (1972), 46-59.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.