On Fourier series

Authors

  • G.P. Névai Hungarian Academy of Sciences, Budapest, Hungary
Abstract views: 301

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bernstein, S. N., Sur un procédé de sommation des séries trigonométriques. Comptes Rendus 191, (1930) 976-979.

Hardy, G. H., Littlewood, J. E., A convergence criterion for Fourier series. Math. Z. 28 (1928), no. 1, 612-634, MR1544980, https://doi.org/10.1007/bf01181186

Hardy, Godfrey Harold, Littlewood, John Edensor, Some new convergence criteria for Fourier series. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3 (1934), no. 1, 43-62, MR1556721.

Izumi, S., Sunouchi, G., Notes on Fourier analysis. XLVIII. Uniform convergence of Fourier series. Tôhoku Math. J. (2) 3, (1951). 298-305, MR0047172, https://doi.org/10.2748/tmj/1178245485

Névai, G.P., A note on a G.I. Natanson's theorem (in Russian), Acta Math. Acad. Sci. Hung. 23, (1972), 219-221.

Névai, G.P., Notes on trigonometric interpolation and Fourier sums (in Russian), Studia Sci. Math. Hung.

Névai, G. P., The Dini-Lipschitz test. (Russian) Acta Math. Acad. Sci. Hungar. 24 (1973), 349-351, MR0338651, https://doi.org/10.1007/bf01958046

Nikolskiî, S.M., Asymptotic estimation of the remainder term in case of approximation by Fourier sums (in Russian), Doklady AN SSSR 32, (1941), 386-389.

Rogosinski, Werner, Uber die Abschnitte trigonometrischer Reihen. (German) Math. Ann. 95 (1926), no. 1, 110-134, MR1512267, https://doi.org/10.1007/bf01206600

Salem, R., Zygmund, A., The approximation by partial sums of Fourier series. Trans. Amer. Math. Soc. 59, (1946). 14-22, MR0015538, https://doi.org/10.1090/s0002-9947-1946-0015538-0

Žuk, V. V., On representation of continuous 2π periodic function by linear methods of summation (in Russian), Izvestija Vysih Ucebnyh Zavedenii, ser. Mat. 8 (1972), 46-59.

Downloads

Published

1976-08-01

How to Cite

Névai, G. (1976). On Fourier series. Anal. Numér. Théor. Approx., 5(2), 181–188. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1976-vol5-no2-art6

Issue

Section

Articles