A characterisation of Chebyshevian subspace of \(y^{\perp}\)-type
Abstract
Not available.Downloads
References
Banach, Stefan, Wstęp do teorii funkcji rzeczywistych. (Polish) [Introduction to the theory of real functions] Monografie Matematyczne. Tom XVII.] Polskie Towarzystwo Matematyczne, Warszawa-Wrocław, 1951. iv+224 pp., MR0043161.
Czipszer, J., Gehér, L., Extension of functions satisfying a Lipschitz condition. Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220, MR0071493, https://doi.org/10.1007/bf02021278
Kolumban, I., On the uniqueness of the extension of linear functionals. (Russian) Mathematica (Cluj) 4 (27) 1962 267-270, MR0164223.
Mustăţa, Costică, On certain Čebyšev subspaces of the normed space of Lipschitzian functions. (Romanian) Rev. Anal. Numer. Teoria Aproximaţiei 2 (1973), 81-87, MR0387920.
Mustăţa, Costică, A monotonicity property of the operator of best approximation in the space of Lipschitzian functions. (Romanian) Rev. Anal. Numer. Teoria Aproximaţiei 3 (1974), no. 2, 153-160 (1975), MR0387921.
Nachbin, Leopoldo, A theorem of the Hahn-Banach type for linear transformations. Trans. Amer. Math. Soc. 68, (1950). 28-46, MR0032932, https://doi.org/10.1090/s0002-9947-1950-0032932-3
Pantelidis, Georgios, Approximationstheorie für metrische lineare Räume. (German) Math. Ann. 184 1969 30-48, MR0262754, https://doi.org/10.1007/bf01350613
Phelps, R. R., Uniqueness of Hahn-Banach extensions and unique best approximation. Trans. Amer. Math. Soc. 95 1960 238-255, MR0113125, https://doi.org/10.1090/s0002-9947-1960-0113125-4
Singer, Ivan, Cea mai bună aproximare în spaţii vectoriale normate prin elemente din subspaţii vectoriale. (Romanian) [Best approximation in normed vector spaces by elements of vector subspaces] Editura Academiei Republicii Socialiste România, Bucharest 1967 386 pp., MR0235368.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.