On the zeros of orthogonal polynomials with respect to measures with noncompact support
Abstract
Not available.Downloads
References
Erdős, P., On the distribution of the roots of orthogonal polynomials. Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory) (Budapest, 1969), pp. 145--150. Akadémiai Kiadó, Budapest, 1972, MR0410237.
Erdős, P. Freud, G., On orthogonal polynomials with regularly distributed zeros. Proc. London Math. Soc. (3) 29 (1974), 521--537, MR0420119.
Freud, Géza, Orthogonale Polynome. (German) Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 33. Birkhäuser Verlag, Basel-Stuttgart, 1969. 294 pp.,MR0481888.
Freud, G., (in Russian)
Freud, G., On a class of orthogonal polynomials. Constructive theory of functions (Proc. Internat. Conf., Varna, 1970) (Russian), pp. 177--182. Izdat. Bolgar. Akad. Nauk, Sofia, 1972, MR0372287.
Freud, Géza, On the greatest zero of an orthogonal polynomial. I. Acta Sci. Math. (Szeged) 34 (1973), 91--97, MR0318761.
Freud, Géza, On the greatest zero of an orthogonal polynomial. II. Acta Sci. Math. (Szeged) 36 (1974), 49--54, MR0346406.
Freud, G., On estimations of the greatest zeroes of orthogonal polynomials. Acta Math. Acad. Sci. Hungar. 25 (1974), 99--107, MR0370043.
Freud, Géza, On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 1, 1--6, MR0419895.
Nevai, G.P., (in Russian)
Nevai, G.P., (in Russian)
Szegö, Gabor, Orthogonal polynomials. American Mathematical Society Colloquium Publications, Vol. 23. Revised ed. American Mathematical Society, Providence, R.I. 1959 ix+421 pp., MR0106295.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.