Minimal monosplines in \(L_2\) and optimal cubature formulae
Abstract
Not available.Downloads
References
Coman, Gh., Two-dimensional monosplines and optimal cubature formulae. Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 18 (1973), no. 1, 41--53, MR0341816.
Ghizzetti, A.; Ossicini, A., Quadrature formulae. Academic Press, New York 1970 192 pp., MR0269116.
Levin, M., Extremal problems connected with a quadrature formula. (Russian) Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. Tehn. Tead. Seer. 12 1963 44--56, MR0153111.
Levin, M., Šac, È., A generalization of the formula for integration by parts to the case of double integrals. (Russian) Esti NSV Tead. Akad. Toimetised Füüs.-Mat. 18 1969 460--464, MR0282126.
Ritter, K., Two-dimensional spline functions and best approximations of linear functionals. J. Approximation Theory 3 1970 352--368, MR0273257.
Schoenberg, I. J., Monosplines and quadrature formulae. 1969 Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) pp. 157--207 Academic Press, New York, MR0241865.
Stancu, D. D., The remainder of certain linear approximation formulas in two variables. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 1 1964 137--163, MR0177240.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.