On the classification of dynamical systems

Authors

  • Gh. Toader Territorial Computing Center Cluj-Napoca, Romania
Abstract views: 146

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bertolino, Milorad, Solutions of differential equations in arbitrary neighborhoods of given functions. (Serbo-Croatian) Mat. Vesnik 13(28) (1976), no. 1, 21-33, MR0410007.

Bhatia, Nam P., Franklin, Lawrence M., Dynamical systems without separatrices. Funkcial. Ekvac. 15 (1972), 1-12, MR0314021.

Bhatia, N. P., Szegö, G. P., Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, Band 161 Springer-Verlag, New York-Berlin 1970 xi+225 pp., MR0289890.

Hájek, O., Categorial concepts in dynamical system theory. In "Topological Dynamics", J. Auslander and W.H. Gottschalk (Editors), New York - Amsterdam: Benjamin, 1968, 243-258.

Kelley, J.L., General Topology, D. Van Nostrand Company, Inc. Princeton, New Jersey, 1957.

Kuratowski, K. Topology. Vol. II. New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968 xiv+608 pp., MR0259835.

Markus, L., Global structure of ordinary differential equations in the plane. Trans. Amer. Math. Soc. 76, (1954). 127-148, MR0060657, https://doi.org/10.1090/s0002-9947-1954-0060657-0

Markus, L., Lectures in differentiable dynamics. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 3. American Mathematical Society, Providence, R.I., 1971. vi+47 pp., MR0309152.

Markus, Lawrence, Parallel dynamical systems. Topology 8 1969 47-57, MR0234489, https://doi.org/10.1016/0040-9383(69)90030-5

Nemytskii, V. V., Stepanov, V. V., Qualitative theory of differential equations. Princeton Mathematical Series, No. 22 Princeton University Press, Princeton, N.J. 1960 viii+523 pp., MR0121520.

Toader, Gh., A metric of Pompeiu-Hausdorff type for the set of continuous functions. Rev. Anal. Numér. Théorie Approximation 5 (1976), no. 2, 213-217 (1977), MR0487985.

Toader, Gh., On uniformly equicontinuous dynamical systems. Anal. Numér. Théor. Approx. 7 (1978), no. 1, 107-112, MR0530904.

Ura, Taro, Local dynamical systems and their isomorphisms. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971), pp. 76-90. Lecture Notes in Math., Vol. 243, Springer, Berlin, 1971, MR0393683, https://doi.org/10.1007/bfb0058720

Vrublevskaya, I. N., On geometric equivalence of the trajectories of dynamical systems. (Russian) Mat. Sb. N.S. 42(84) 1957 361-424, MR0097054.

Downloads

Published

1979-02-01

How to Cite

Toader, G. (1979). On the classification of dynamical systems. Anal. Numér. Théor. Approx., 8(1), 99–109. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1979-vol8-no1-art12

Issue

Section

Articles