On the classification of dynamical systems
Abstract
Not available.
Downloads
References
Bertolino, Milorad, Solutions of differential equations in arbitrary neighborhoods of given functions. (Serbo-Croatian) Mat. Vesnik 13(28) (1976), no. 1, 21-33, MR0410007.
Bhatia, Nam P., Franklin, Lawrence M., Dynamical systems without separatrices. Funkcial. Ekvac. 15 (1972), 1-12, MR0314021.
Bhatia, N. P., Szegö, G. P., Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, Band 161 Springer-Verlag, New York-Berlin 1970 xi+225 pp., MR0289890.
Hájek, O., Categorial concepts in dynamical system theory. In "Topological Dynamics", J. Auslander and W.H. Gottschalk (Editors), New York - Amsterdam: Benjamin, 1968, 243-258.
Kelley, J.L., General Topology, D. Van Nostrand Company, Inc. Princeton, New Jersey, 1957.
Kuratowski, K. Topology. Vol. II. New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968 xiv+608 pp., MR0259835.
Markus, L., Global structure of ordinary differential equations in the plane. Trans. Amer. Math. Soc. 76, (1954). 127-148, MR0060657, https://doi.org/10.1090/s0002-9947-1954-0060657-0
Markus, L., Lectures in differentiable dynamics. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 3. American Mathematical Society, Providence, R.I., 1971. vi+47 pp., MR0309152.
Markus, Lawrence, Parallel dynamical systems. Topology 8 1969 47-57, MR0234489, https://doi.org/10.1016/0040-9383(69)90030-5
Nemytskii, V. V., Stepanov, V. V., Qualitative theory of differential equations. Princeton Mathematical Series, No. 22 Princeton University Press, Princeton, N.J. 1960 viii+523 pp., MR0121520.
Toader, Gh., A metric of Pompeiu-Hausdorff type for the set of continuous functions. Rev. Anal. Numér. Théorie Approximation 5 (1976), no. 2, 213-217 (1977), MR0487985.
Toader, Gh., On uniformly equicontinuous dynamical systems. Anal. Numér. Théor. Approx. 7 (1978), no. 1, 107-112, MR0530904.
Ura, Taro, Local dynamical systems and their isomorphisms. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971), pp. 76-90. Lecture Notes in Math., Vol. 243, Springer, Berlin, 1971, MR0393683, https://doi.org/10.1007/bfb0058720
Vrublevskaya, I. N., On geometric equivalence of the trajectories of dynamical systems. (Russian) Mat. Sb. N.S. 42(84) 1957 361-424, MR0097054.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.