On some bivariate spline operators

Authors

  • P. Blaga Cluj-Napoca, Romania
  • Gh. Coman Cluj-Napoca, Romania
Abstract views: 167

Abstract

Not available.

Downloads

Download data is not yet available.

References

Aramă, O., On the properties of monotonicity of the sequence of interpolation polynomials of S.N. Bernstein and their application to the study of approximation of funcitons (Russian). Mathematica (Cluj) 2(25), 1, 25-40, 1960.

Coman, Gh., Frenţiu, M., Bivariate spline approximation. Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 19 (1974), no. 1, 59-64, MR0342911.

Gordon, William J., Distributive lattices and the approximation of multivariate functions. 1969 Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) pp. 223-277 Academic Press, New York, MR0275021.

Marsden, Martin J., An identity for spline functions with applications to variation-diminishing spline approximation. J. Approximation Theory 3 1970 7-49, MR0254474.

Marsden, Martin J., On uniform spline approximation. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VII. J. Approximation Theory 6 (1972), 249-253, MR0336165.

Marsden, Martin Schoenberg, I. J., On variation diminishing spline approximation methods. Mathematica (Cluj) 8 (31) 1966 61-82, MR0213791.

Popoviciu, Tiberiu, Sur le reste dans certaines formules linéaires d'approximation de l'analyse. (French) Mathematica (Cluj) 1 (24) 1959 95-142, MR0129531.

Sard, Arthur, Linear approximation. American Mathematical Society, Providence, R.I. 1963 xi+544 pp., MR0158203.

Schoenberg, I. J., On spline functions. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 255-291 Academic Press, New York, MR0223801.

Stancu, D. D., The remainder of certain linear approximation formulas in two variables. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 1 1964 137-163, MR0177240, https://doi.org/10.1137/0701013

Stancu, D. D., Evaluation of the remainder term in approximation formulas by Benstein polynomials. Math. Comp. 17 1963 270-278, MR0179524, https://doi.org/10.1090/s0025-5718-1963-0179524-6

Stancu, D. D., A method for obtaining polynomials of Bernstein type of two variables. Amer. Math. Monthly 70 1963 260-264, MR0152787, https://doi.org/10.1080/00029890.1963.11990079

Stancu, D. D., Approximation of bivariate functions by means of some Bernšteĭn-type operators. Multivariate approximation (Sympos., Univ. Durham, Durham, 1977), pp. 189-208, Academic Press, London-New York, 1978, MR0525875.

Downloads

Published

1979-08-01

How to Cite

Blaga, P., & Coman, G. (1979). On some bivariate spline operators. Anal. Numér. Théor. Approx., 8(2), 143–153. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1979-vol8-no2-art4

Issue

Section

Articles