The extension of starshaped bounded Lipschitz functions
Abstract
Not available.Downloads
References
Cobzaş, Ş., Mustăţa, C. Norm-preserving extension of convex Lipschitz functions. J. Approx. Theory 24 (1978), no. 3, 237-244, MR0516679, https://doi.org/10.1016/0021-9045(78)90028-x
Holmes, Richard B., A course on optimization and best approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin-New York, 1972. viii+233 pp., MR0420367.
Johnson, J. A., Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Amer. Math. Soc. 148 (1970), 147-169, MR0415289, https://doi.org/10.1090/s0002-9947-1970-0415289-8
McShane, E. J., Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), no. 12, 837-842, MR1562984, https://doi.org/10.1090/s0002-9904-1934-05978-0
Mustăţa, Costică, Best approximation and uniqueMR0433107 extension of Lipschitz functions. J. Approximation Theory 19 (1977), no. 3, 222-230, https://doi.org/10.1016/0021-9045(77)90053-3
Mustăţa, Costică, A characterisation of Chebyshevian subspace of Y⊥-type. Anal. Numér. Théor. Approx. 6 (1977), no. 1, 51-56, MR0617935.
Mustăţa, C., Norm preserving extension of starshaped Lipschitz functions. Mathematica (Cluj) 19(42) (1977), no. 2, 183 -187 (1978), MR0506739.
Phelps, R. R., Uniqueness of Hahn-Banach extensions and unique best approximation. Trans. Amer. Math. Soc. 95 1960 238-255, MR0113125, https://doi.org/10.1090/s0002-9947-1960-0113125-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.