A boolean method in bivariate interpolation
Abstract
Not available.Downloads
References
Biermann, Otto, Über näherungsweise Cubaturen. (German) Monatsh. Math. Phys. 14 (1903), no. 1, 211-225, MR1547094 .
Davis, Philip J. Interpolation and approximation. Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London 1963 xiv+393 pp., MR0157156.
Delvos, F.-J., Posdorf, H., n-th order blending. Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976), pp. 53-64. Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, MR0487203.
Gordon, William J., Distributive lattices and the approximation of multivariate functions. 1969 Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) pp. 223-277 Academic Press, New York, MR0275021.
Gordon, William J., Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8 1971 158-177, MR0282498, https://www.jstor.org/stable/2949532
Melkes, František, Reduced piecewise bivariate Hermite interpolations. Numer. Math. 19 (1972), 326-340, MR0317510.
Phillips, G. M., Explicit forms for certain Hermite approximations. Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 177-180, MR0319351.
Stancu, D. D., The remainder of certain linear approximation formulas in two variables. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 1 1964 137-163, MR0177240, https://doi.org/10.1137/0701013
Watkins, D. S., Lancaster, P., Some families of finite elements. J. Inst. Math. Appl. 19 (1977), no. 4, 385-397, MR0438743, https://doi.org/10.1093/imamat/19.4.385
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.