On approximation of continous functions in the metric \(\int_0^1|x(t)|dt\)

Authors

  • Wolfgang Warth Lehrstuhle fur Numerische und Angewdante Mathematik der Universitat Gottingen, Germany
Abstract views: 172

Abstract

Not available.

Downloads

Download data is not yet available.

References

Brosowski, Bruno, Wegmann, Rudolf, Charakterisierung bester Approximationen in normierten Vektorräumen. (German) J. Approximation Theory 3 1970 369-397, MR0277980, https://doi.org/10.1016/0021-9045(70)90041-9

DeVore, Ronald, One-sided approximation of functions. J. Approximation Theory 1 1968 no. 1, 11-25, MR0230018, https://doi.org/10.1016/0021-9045(68)90054-3

Jackson, Dunham, A General Class of Problems in Approximation. Amer. J. Math. 46 (1924), no. 4, 215-234, MR1506532.

Karlin, Samuel, Studden, William J., Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, Vol. XV Interscience Publishers John Wiley & Sons, New York-London-Sydney 1966 xviii+586 pp., MR0204922.

Pták, Vlastimil, On approximation of continuous functions in the metric ∫ab|x(t)|dt. Czechoslovak Math. J. 8(83) 1958 267-273; supplement, 464., MR0100752.

Warth, Wolfgang, Approximation with constraints in normed linear spaces. J. Approximation Theory 21 (1977), no. 3, 303-312, MR0493120.

Warth, Wolfgang, On the uniqueness of best uniform approximations in the presence of constraints. J. Approx. Theory 25 (1979), no. 1, 1-11, MR0526271.

Downloads

Published

1980-08-01

How to Cite

Warth, W. (1980). On approximation of continous functions in the metric \(\int_0^1|x(t)|dt\). Anal. Numér. Théor. Approx., 9(2), 293–299. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art16

Issue

Section

Articles