Distances for vector-valued norms

Authors

  • G. Godini National Institute for Scientific an Technical Creation, Bucharest, Romania
Abstract views: 158

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bacopoulos, A., Godini, G., Singer, I., On best approximation in vector-valued norms. Fourier analysis and approximation theory (Proc. Colloq., Budapest, 1976), Vol. I, pp. 89--100, Colloq. Math. Soc. János Bolyai, 19, North-Holland, Amsterdam-New York, 1978, MR0540292.

Bacopoulos, A., Godini, G., Singer, I., Infima of sets in the plane and applications to vectorial optimization. Rev. Roumaine Math. Pures Appl. 23 (1978), no. 3, 343-360, MR0494924.

Godini, G., The distance for vector-valued norms. Rev. Roumaine Math. Pures Appl. 25 (1980), no. 1, 23-32, MR0577189.

Cesari, L., Suryanarayana, M. B., Existence theorems for Pareto optimization in Banach spaces. Bull. Amer. Math. Soc. 82 (1976), no. 2, 306-308, MR0399984.

Cesari, Lamberto, Suryanarayana, M. B., Existence theorems for Pareto problems of optimization. Erroneously published without M. B. Suryanarayana's name. Calculus of variations and control theory (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), pp. 139-154. Publ. Math. Res. Center Univ. Wisconsin, No. 36, Academic Press, New York, 1976, MR0482479.

Singer, Ivan, Best approximation in normed linear spaces by elements of linear subspaces. Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171 Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin 1970 415 pp., MR0270044.

Downloads

Published

1980-08-01

How to Cite

Godini, G. (1980). Distances for vector-valued norms. Anal. Numér. Théor. Approx., 9(2), 181–188. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art3

Issue

Section

Articles