On the hierarchy of the efficient points in linear multiple objective programs with zero-one variables
Abstract
Not available.Downloads
References
Bitran, Gabriel R., Linear multiple objective programs with zero-one variables. Math. Programming 13 (1977), no. 2, 121-139, https://doi.org/10.1007/bf01584332
Bitran, Gabriel R., Theory and algorithms for linear multiple objective programs with zero-one variables. Math. Programming 17 (1979), no. 3, 362-390, MR0550851, https://doi.org/10.1007/bf01588256
Evans, J. P., Steuer, R. E., A revised simplex method for linear multiple objective programs. Math. Programming 5 (1973), 54-72, MR0384115.
Geoffrion, Arthur M., Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 1968 618-630, MR0229453.
Ivanescu, Peter L., Rudeanu, Sergiu, Méthodes booléennes en recherche opérationnelle. (French) Préface du Richard Bellman. Traduit de l'anglais par Étienne Fouquet Dunod, Paris 1970 xviii+378 pp., MR0260409.
Korbut, A. A., Finkel'šteĭn, Ju. Ju.,{cyr Diskretnoe programmirovanie.} (Russian) [Discrete programming] Izdat. "Nauka", Moscow 1969 368 pp., MR0261958.
Kornbluth, J. S. H., Duality, indifference and sensitivity analysis in multiple objective linear programming. Operational Res. Quart. 25 (1974), 599-614, MR0378790, https://doi.org/10.1057/jors.1974.108
Kovalev, M. M. Diskretnaya optimizatsiya (tselochislennoe programmirovanie). (Russian) [Discrete optimization (integer programming)] Izdat. Beloruss. Univ., Minsk,] 1977. 191 pp., MR0441336.
Maruşciac, I., On the hierarchy of the efficient extreme points in multiobjective programming. Studia Univ. Babeş-Bolyai Math. 22 (1977), 53-60, MR0434409.
Philip, Johan, Algorithms for the vector maximization problem. Math. Programming 2 (1972), 207-229, MR0302205 .
Zeleny, Milan, Linear multiobjective programming. Lecture Notes in Economics and Mathematical Systems, Vol. 95. Springer-Verlag, Berlin-New York, 1974. x+220 pp., MR0351440.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.