On some sequence to function transformations

Authors

  • R. N. Mohapatra American University of Beirut and University of California, Santa Barbara, California, USA
  • G. Das American University of Beirut and University of California , Santa Barbara, California, USA
Abstract views: 149

Abstract

Not available.

Downloads

Download data is not yet available.

References

Borwein, D., On methods of summability based on power series. Proc. Roy. Soc. Edinburgh. Sect. A. 64 (1957), 342-349, MR0091364.

Borwein, D., On methods of summability based on integral functions. Proc. Cambridge Philos. Soc. 55 1959 23-30, MR0101434.

Borwein, D., On methods of summability based on integral functions. II. Proc. Cambridge Philos. Soc. 56 1960 125-131, MR0116162, https://doi.org/10.1017/s030500410003437x

Borwein, D., A logarithmic method of summability. J. London Math. Soc. 33 1958 212-220, MR0101432.

Borwein, D., On a scale of Abel-type summability methods. Proc. Cambridge Philos. Soc. 53 (1957), 318-322, MR0086158, https://doi.org/10.1017/s0305004100032357

Bosanquet, L. S., Note on convergence and summability factors. II. Proc. London Math. Soc. (2) 50, (1948). 295-304, MR0026136.

Das, G., On some methods of summability. Quart. J. Math. Oxford Ser. (2) 17 1966 244-256, MR0204914, https://doi.org/10.1093/qmath/17.1.244

Das, G., Inclusion theorems for an absolute method of summability. J. London Math. Soc. (2) 6 (1973), 467-472, MR0316933, https://doi.org/10.1112/jlms/s2-6.3.467

Hardy, G. H., Divergent Series. Oxford, at the Clarendon Press, 1949. xvi+396 pp., MR0030620.

Hurwitz, Henry, Jr., Total regularity of general transformations. Bull. Amer. Math. Soc. 46, (1940). 833-837, MR0002646.

McFadden, Leonard, Absolute Nörlund summability. Duke Math. J. 9, (1942). 168-207, MR0006379, https://doi.org/10.1215/s0012-7094-42-00913-x

Mohanty, R., Patnaik, J. N., On the absolute L-summability of a Fourier series. J. London Math. Soc. 43 1968 452-456, MR0226297, https://doi.org/10.1112/jlms/s1-43.1.452

Orlicz, M.W., Beiträge zur Theorie der Orthogonalentwicklungen II. Studia Math. 1, 241-255, 1929.

Prasa, B.N., The Absolute Summability (A) of a Fourier Series. Proc. Edin. Math. Soc., 2, 129-134, 1929.

Tatchell, J. B., A note on a theorem by Bosanquet. J. London Math. Soc. 29, (1954). 207-211, MR0060611.

Whittaker, J.M., The Absolute Summability of Fourier Series. Proc. Edin. Math. Soc., 2, 1-5, 1930.

Downloads

Published

1980-08-01

How to Cite

Mohapatra, R. N., & Das, G. (1980). On some sequence to function transformations. Anal. Numér. Théor. Approx., 9(2), 233–243. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art8

Issue

Section

Articles