Determining sets for finitely defined operators

Authors

  • Ioan Raşa Cluj-Napoca, Romania
Abstract views: 230

Abstract

Not available.

Downloads

Download data is not yet available.

References

Berens, H., Lorentz, G. G., Convergence of positive operators. J. Approximation Theory 17 (1976), no. 4, 307-314, MR0422963, https://doi.org/10.1016/0021-9045(76)90074-5

Boboc, Nicu, Bucur, Gheorghe, Conuri convexe de funcţii continue pe spaţii compacte. (Romanian) [Convex cones of continuous functions on compact spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1976. 198 pp., MR0470660 (in Romanian).

Cavaretta, A. S., Jr. A Korovkin theorem for finitely defined operators. Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973), pp. 299-305. Academic Press, New York, 1973, MR0333547.

Ferguson, Le Baron O.; Rusk, Michael D. Korovkin sets for an operator on a space of continuous functions. Pacific J. Math. 65 (1976), no. 2, 337-345, MR0420100, https://doi.org/10.2140/pjm.1976.65.337

Micchelli, C. A., Chebyshev subspaces and convergence of positive linear operators. Proc. Amer. Math. Soc. 40 (1973), 448-452, MR0328445, https://doi.org/10.1090/s0002-9939-1973-0328445-2

Micchelli, C. A., Convergence of positive linear operators on C(X). Collection of articles dedicated to G. G. Lorentz on the occasion of his sixty-fifth birthday, III. J. Approximation Theory 13 (1975), 305-315, MR0382937, https://doi.org/10.1016/0021-9045(75)90040-4

Rusk, Michael D., Determining sets and Korovkin sets on the circle. J. Approximation Theory 20 (1977), no. 3, 278-283, MR0447930, https://doi.org/10.1016/0021-9045(77)90063-6

Šaškin, Ju. A., Finitely defined linear operators in spaces of continuous functions. (Russian) Uspehi Mat. Nauk 20 1965 no. 6 (126), 175-180, MR0193495.

Downloads

Published

1981-02-01

How to Cite

Raşa, I. (1981). Determining sets for finitely defined operators. Anal. Numér. Théor. Approx., 10(1), 89–93. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1981-vol10-no1-art10

Issue

Section

Articles