Sufficient conditions of univalency for complex functions in the class \(C^1\)
Abstract
Not available.Downloads
References
W. Klaplan, Close-to-convex schlicht functions, Michigan Math. J.1. 169-185, 1952
K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokaido Univ., 2, 124-155, 1934.
S. Ozaki, On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku, A., 2, 40, 167-188, 1935.
S.E. Warschawski, On the higher derivate ives at the boundary in conformal mapping. Trans. Amer. Math. Soc., 38, 310-340, 1935.
J. Wolff, L’integrale d’une function holomorphe et a partie reelle positive dans un demiplan est univalent. C.R. Acad. Sci., Paris, 198, 13, 1209-1210, 1934.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.