A generalization of set-valued metric projections
Abstract
Not available.Downloads
References
Sullivan, Francis E., Atlestam, Barbro, Descent methods in smooth, rotund spaces with applications to approximation in Lp. J. Math. Anal. Appl. 48 (1974), 155-164, MR0352832.
Browder, F. E., Petryshyn, W. V., The solution by iteration of linear functional equations in Banach spaces. Bull. Amer. Math. Soc. 72 1966 566-570, MR0190744.
Day, Mahlon M., Normed linear spaces. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973. viii+211 pp., MR0344849.
F. Deutsch, Metric projection, mimeographed lecture notes, 1975.
Godini, G., On set-valued mappings. Rev. Roumaine Math. Pures Appl. 22 (1977), no. 1, 53-67, MR0442561.
Holmes, Richard B., A course on optimization and best approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin-New York, 1972. viii+233 pp., MR0420367.
Holmes, Richard B., Geometric functional analysis and its applications. Graduate Texts in Mathematics, No. 24. Springer-Verlag, New York-Heidelberg, 1975. x+246 pp., MR0410335.
von Neumann, John, On rings of operators. Reduction theory. Ann. of Math. (2) 50, (1949). 401-485, MR0029101.
Schaefer, Helmut, Über die Methode sukzessiver Approximationen. (German) Jber. Deutsch. Math. Verein. 59 (1957), Abt. 1, 131-140, MR0084116.
I. Singer, Best approximation in normed linear spaces by element of linear subspaces, Publishing House of the Academy, Bucharest-Springer Verlag, 1970.
Singer, Ivan, The theory of best approximation and functional analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 13. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1974. vii+95 pp., MR0374771.
F. Sullivan, A generalization of best approximation operators, Ann. Mat. Pura Appl. (1), 107 245-261, (1976) (1975).
Wiener, N., Masani, P., The prediction theory of multivariate stochastic processes. II. The linear predictor. Acta Math. 99 1958 93-137, MR0097859.
Zarantonello, Eduardo H. Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets. Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 237-341. Academic Press, New York, 1971, MR0388177.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.