On common fixed point in uniformizable spaces

Authors

  • Olga Hadžić University of Novi Sad, Serbia
Abstract views: 151

Abstract

Not available.

Downloads

Download data is not yet available.

References

(in Russian)

Fisher, Brian, Mappings with a common fixed point. Math. Sem. Notes Kobe Univ. 7 (1979), no. 1, 81-84, MR0544915.

Gândac, Florea, Fixed point theorems in locally convex spaces. (Romanian) Stud. Cerc. Mat. 24 (1972), 1097-1106, MR0470766.

Hadžić, Olga, A fixed-point theorem in probabilistic locally convex spaces. Rev. Roumaine Math. Pures Appl. 23 (1978), no. 5, 735-744, MR0506591.

Hadžić, O., Fixed point for mappings on probabilistic locally convex spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 22(70) (1978), no. 3, 287-292, MR0513060.

Hadžić, O.; Stanković, B., Some theorems on the fixed point in locally convex spaces. Publ. Inst. Math. (Beograd) (N.S.) 10 (24) 1970 9-19, MR0281070.

V. I. Istratescu, Introducere în teoria spaţiilor metrice probabilistice cu aplicaţii, Editura Tehnică, Bucureşti, 1974.

Duong Trọng Nhân, Pair of nonlinear contraction mappings. Common fixed points. Studia Univ. Babeş-Bolyai Math. 26 (1981), no. 1, 34-51, MR0654121.

Do Hong Tan, On the contraction principle in uniformizable spaces. Acta Math. Vietnam. 5 (1980), no. 2, 88-99 (1982), MR0659122.

Sehgal, V. M., Bharucha-Reid, A. T., Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102, MR0310858.

Downloads

Published

1983-02-01

How to Cite

Hadžić, O. (1983). On common fixed point in uniformizable spaces. Anal. Numér. Théor. Approx., 12(1), 45–54. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1983-vol12-no1-art5

Issue

Section

Articles