On the dense divergence of Lagrange interpolation in a complex domain

Authors

  • Petru Jebeleanu High School No.6 Drobeta-Turnu Severin, Romania
Abstract views: 168

Abstract

Not available.

Downloads

Download data is not yet available.

References

Al'per, S. Ya., On the convergence of Lagrange's interpolational polynomials in the complex domain. (Russian) Uspehi Mat. Nauk (N.S.) 11 (1956), no. 5(71), 44-50, MR0083576.

Berman, D. L., A generalization of the theory of linear polynomial operations to a complex region. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1968 1968 no. 8 (75), 18-25, MR0235128.

Cobzaş, Ştefan; Muntean, Ioan, Condensation of singularities and divergence results in approximation theory. J. Approx. Theory 31 (1981), no. 2, 138-153, MR0624359.

German, A. H., Interpolation in the complex domain. (Russian) Anal. Math. 6 (1980), no. 2, 121-135, MR0581383.

Jebelean, Petru, Double condensation of singularities for symmetric mappings. Studia Univ. Babeş-Bolyai Math. 29 (1984), 47-52, MR0782290.

Muntean, Ioan, The Lagrange interpolation operators are densely divergent. Studia Univ. Babeş-Bolyai Math. 21 (1976), 28-30, MR0402332.

Vértesi, P., On the almost everywhere divergence of Lagrange interpolation (complex and trigonometric cases). Acta Math. Acad. Sci. Hungar. 39 (1982), no. 4, 367-377, MR0653848.

Downloads

Published

1983-02-01

How to Cite

Jebeleanu, P. (1983). On the dense divergence of Lagrange interpolation in a complex domain. Anal. Numér. Théor. Approx., 12(1), 61–64. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1983-vol12-no1-art7

Issue

Section

Articles