On the dense divergence of Lagrange interpolation in a complex domain

Authors

  • Petru Jebeleanu High School No.6 Drobeta-Turnu Severin, Romania
Abstract views: 173

Abstract

Not available.

Downloads

References

Al'per, S. Ya., On the convergence of Lagrange's interpolational polynomials in the complex domain. (Russian) Uspehi Mat. Nauk (N.S.) 11 (1956), no. 5(71), 44-50, MR0083576.

Berman, D. L., A generalization of the theory of linear polynomial operations to a complex region. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1968 1968 no. 8 (75), 18-25, MR0235128.

Cobzaş, Ştefan; Muntean, Ioan, Condensation of singularities and divergence results in approximation theory. J. Approx. Theory 31 (1981), no. 2, 138-153, MR0624359.

German, A. H., Interpolation in the complex domain. (Russian) Anal. Math. 6 (1980), no. 2, 121-135, MR0581383.

Jebelean, Petru, Double condensation of singularities for symmetric mappings. Studia Univ. Babeş-Bolyai Math. 29 (1984), 47-52, MR0782290.

Muntean, Ioan, The Lagrange interpolation operators are densely divergent. Studia Univ. Babeş-Bolyai Math. 21 (1976), 28-30, MR0402332.

Vértesi, P., On the almost everywhere divergence of Lagrange interpolation (complex and trigonometric cases). Acta Math. Acad. Sci. Hungar. 39 (1982), no. 4, 367-377, MR0653848.

Downloads

Published

1983-02-01

Issue

Section

Articles

How to Cite

Jebeleanu, P. (1983). On the dense divergence of Lagrange interpolation in a complex domain. Anal. Numér. Théor. Approx., 12(1), 61-64. https://ictp.acad.ro/jnaat/journal/article/view/1983-vol12-no1-art7