General solution of the arctangent functional equation
Abstract
Not available.
Downloads
References
Aczel, J., Vorlesungen uber Funktionagleichungen und ihre Anwendungen, Birkhauser Verlag, Basel und Stuttgart, 1961.
Alt, W., Uber die reellen Funktionen einer reellen Veranderlichen, welche ein rationales Additionstheorem Besitzen, Deutsche Math., 5, 1-12, 1940.
Banach, S., Sur l’equation fonctionnelle f(x+y)=f(x)+f(y), Fundam. Math., 1, 123-124, 1920.
Eberlein, W.F., The elementary transcendental funcitons, Amer. Math. Monthly 61, 386-392, 1954.
Hamel, G., Eine Basis alle Zahlen und die unstetige Losungen der Funktionalgleichung f(x+y)=f(x)+f(y), Math. Ann., 60, 459-462, 1905.
Hardy, G.H., A course of pure mathematics, Foruth Edition, Cambridge University Press, Cambridge, 1925.
Hurwitz, A., Uber die Einguhrung der elementaren transzendenten Funktionen in der algebraischen Analysis, Math. Ann., 70, 33-47. 1911.
Kiesewetter, H., Uber die arctan-Funktionalglichung, ihre mehdreutigen, stetigen Losungen and eine nichtstetige Grupps, Wiss. Z. Friedrich-Schiller-Univ. Jena Math.Natur. Reihe: 14, 417-421, 1965.
Maak, W., Dikfferential – und Integralrechnung, 4 Auflage, Vandenhoeck und Ruprecht, Gottingen, 1969.
Muntean, I., Elementary transcendental functions (Romanian), Universitatea “Babes-Bolyai”, Cluj=Napoca, 1982.
Natanson, I.P., Theory of functions of a real variable. Second Edition (Russian), Gos. Izdat. Tehn-Teoret. Lit., Moscow, 1957.
Stamate, I. and Ghircoiasiu, N., Functional equations defining trigonometric functions (Romanian), Bul. Stiint. Inst. Politehn. Cluj 10, 57-60, 1967.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.