Some generalization of certain O. Hadžić contraction type-theorems
Abstract
Not available.Downloads
References
Bernfeld, Stephen R., Lakshmikantham, V., An introduction to nonlinear boundary value problems. Mathematics in Science and Engineering, Vol. 109. Academic Press, Inc. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. xi+386 pp., MR0445048.
Boyd, D. W., Wong, J. S., W. On nonlinear contractions. Proc. Amer. Math. Soc. 20 1969 458-464, MR0239559, https://doi.org/10.1090/s0002-9939-1969-0239559-9
Ćirić, Ljubomir B., Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.) 12(26) (1971), 19-26, MR0309092.
Ćirić, Ljubomir, On contraction type mappings. Math. Balkanica 1 (1971), 52-57, MR0324494.
Hadžić, Olga, A theorem on the fixed point in locally convex spaces. Rev. Roumaine Math. Pures Appl. 27 (1982), no. 7, 775-780, MR0679824.
Hadžić, O., Existence theorems for the system x=H(x,y),y=K(x,y) in locally convex spaces. Publ. Inst. Math. (Beograd) (N.S.) 16(30) (1973), 65-73, MR0355702.
Guseman, L. F., Jr., Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 26 1970 615-618, MR0266010, https://doi.org/10.1090/s0002-9939-1970-0266010-3
Husain, S. A., Sehgal, V. M., A fixed point theorem with a functional inequality. Publ. Inst. Math. (Beograd) (N.S.) 21(35) (1977), 89-91, MR0454951.
Matkowski, Janusz, Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 62 (1977), no. 2, 344-348, MR0436113, https://doi.org/10.1090/s0002-9939-1977-0436113-5
Miczko, A., Palczewski, B., On convergence of successive approximations of some generalized contraction mappings. Ann. Polon. Math. 40 (1983), no. 3, 213-232, MR0731438, https://doi.org/10.4064/ap-40-3-213-232
Miczko, A., Some remarks on the Sehgal generalized contraction mappings, Zeszyty Naukoowe Politechniki Gdańskiej, Matematyka XII (1982).
Netes, W., The existence and uniqueness of solution of the ordinary differential equation in locally convex space, Mat. Zam. 25(6) (1976) (in Russian).
Rus, Ioan A., On common fixed points. Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 18 (1973), no. 1, 31-33, MR0336729.
Rus, Ioan A., Fixed point theorems for multi-valued mappings in complete metric spaces. Collection of articles dedicated to Tatsujiro Shimizu on the occasion of his 77th birthday. Math. Japon. 20 (1975), special issue, 21-24, MR0418075.
Rus, Ioan A., Results and problems in the metrical common fixed point theory. Mathematica (Cluj) 21(44) (1979), no. 2, 189-194, MR0594878.
Sehgal, V. M., A fixed point theorem for mappings with a contractive iterate. Proc. Amer. Math. Soc. 23 1969 631-634, MR0250292, https://doi.org/10.1090/s0002-9939-1969-0250292-x
Singh, K. L., Fixed-point theorems for contractive-type mappings. J. Math. Anal. Appl. 72 (1979), no. 1, 283-290, MR0552337, https://doi.org/10.1016/0022-247x(79)90289-0
Ważewski, T., Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparison. (French) Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 1960 47- 52, MR0126109.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.