A class of generalized Szasz operators and their convergence properties

Authors

  • Elias Masry University of California, San Diego, California, USA
Abstract views: 147

Abstract

Not available.

Downloads

Download data is not yet available.

References

Boas, Ralph P., Jr., Buck, R. Creighton, Polynomial expansions of analytic functions. Second printing, corrected. Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Bd. 19 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin 1964 viii+77 pp., MR0162914.

DeVore, Ronald A., The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, Vol. 293. Springer-Verlag, Berlin-New York, 1972. viii+289 pp. , MR0420083.

Ditzian, Z., Convergence of sequences of linear positive operators: remarks and applications. J. Approximation Theory 14 (1975), no. 4, 296-301, MR0377368, https://doi.org/10.1016/0021-9045(75)90076-3

Erdélyi, A., Ed., Higher Transcendental Functions, McGraw-Hill, New York (1955).

Jakimovski, A., Leviatan, D., Generalized Szász operators for the approximation in the infinite interval. Mathematica (Cluj) 11 (34) 1969 97-103, MR0262743.

Kawata, Tatsuo Fourier analysis in probability theory. Probability and Mathematical Statistics, No. 15. Academic Press, New York-London, 1972. xii+668 pp., MR0464353.

Korovkin, P. P., Linear operators and approximation theory. Translated from the Russian ed. (1959). Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III. Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi 1960 vii+222 pp., MR0150565.

Masry, Elias, Cambanis, Stamatis, Consistent estimation of continuous-time signals from nonlinear transformations of noisy samples. IEEE Trans. Inform. Theory 27 (1981), no. 1, 84-96, MR0605939, https://doi.org/10.1109/tit.1981.1056298

Sheffer, I. M., Some properties of polynomial sets of type zero. Duke Math. J. 5, (1939). 590-622, MR0000081, https://doi.org/10.1215/s0012-7094-39-00549-1

Szasz, Otto, Generalization of S. Bernstein's polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, (1950). 239-245, MR0045863, https://doi.org/10.6028/jres.045.024

Titchmarsh, E. C., The zeros of certain integral functions, Proc. London Math. Soc., 25, 283-302, (1925), https://doi.org/10.1112/plms/s2-25.1.283

Downloads

Published

1984-02-01

Issue

Section

Articles

How to Cite

Masry, E. (1984). A class of generalized Szasz operators and their convergence properties. Anal. Numér. Théor. Approx., 13(1), 45-56. https://ictp.acad.ro/jnaat/journal/article/view/1984-vol13-no1-art6