\(L_p\)-approximation by linear combination of integral Bernstein-type operators
Abstract
Not available.Downloads
References
Derriennic, Marie Madeleine Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés. (French) J. Approx. Theory 31 (1981), no. 4, 325-343, MR0628516, https://doi.org/10.1016/0021-9045(81)90101-5
Durrmeyer, J. L., Une formula d'inversion de la transofmée de Lapace: Applications a' la theorie des moments, These de 3e cycle, Faculté des Sciences de l'Université de Paris, (1967).
Goldberg, Seymour, Meir, A., Minimum moduli of ordinary differential operators. Proc. London Math. Soc. (3) 23 (1971), 1-15, MR0300145, https://doi.org/10.1112/plms/s3-23.1.1
Johnen, H., Inequalities connected with the moduli of smoothness. Mat. Vesnik 9(24) (1972), 289-303, MR0325868.
May, C. P., Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math. 28 (1976), no. 6, 1224-1250, MR0435682, https://doi.org/10.4153/cjm-1976-123-8
Rathore, R. K. S., Linear Combinations of Linear Positive Operators and Generating Relations in Special Functions, Thesis, Indian Institute of Technology, Delhi, (1973).
Sinha, T. A., Restructured Sequences of Linear Positive Operators for Higher Order L-Approximation, Thesis, Indian Institute of Technology, Kanpur (India), (1981).
Timan, A. F., Theory of approximation of functions of a real variable. Translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34 A Pergamon Press Book. The Macmillan Co., New York 1963 xii+631 pp., MR0192238 .
Zygmund, Antoni Trigonometrical series. Dover Publications, New York, 1955. vii+329. pp., MR0072976.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.