On the divergence of Lagrange interpolation processes
Abstract
Not available.Downloads
References
Cobzaş, Ştefan; Muntean, Ioan, Condensation of singularities and divergence results in approximation theory. J. Approx. Theory 31 (1981), no. 2, 138-153, MR0624359.
Erdős, P., Problems and results on the theory of interpolation. I. Acta Math. Acad. Sci. Hungar. 9 1958 381-388, MR0101614, https://doi.org/10.1007/bf02020269
Erdös, P. asndf Vértesi, P., On the almost everywhere divergence of Lagrange intyerpolatory polynomials for arbitrary system of nodes, Acta Math. Acad. Sci. Hungar, 36, 1980, 71-89. Corrections, ibid., 38, 263, 1981, https://doi.org/10.1007/bf01897094
Pilipčuk, S. S., The divergence of the Lagrange interpolation process. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1975, no. 9(160), 43-47, MR0442545.
Pilipčuk, S. S., Divergence of Lagrange interpolation processes on sets of second category. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1979, no. 3, 45-52, MR0539767.
Pilipčuk, S. S., Tests for the convergence of interpolation processes. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1979, no. 12, 39-44, MR0560419.
Pilipčuk, S. S. Convergence of Lagrange interpolational processes with respect to Jacobi nodes. (Russian) Azerbaĭdzhan. Gos. Univ. Uchen. Zap. 1979, no. 1, 60-70, MR0576431.
Povčun, L. P., The divergence of interpolational processes at a fixed point. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1978, no. 3(190), 56-60, MR0493047.
Privalov, A. A. The divergence of Lagrange interpolation processes with respect ot Jacobi nodes on a set of positive measure, MR0420066.
Privalov, A. A., Approximation of functions by interpolation polynomials. Fourier analysis and approximation theory (Proc. Colloq., Budapest, 1976), Vol. II, pp. 659-670, Colloq. Math. Soc. János Bolyai, 19, North-Holland, Amsterdam-New York, 1978, MR0540343.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.