An overview of separable fractional programming problem

Authors

  • I. M. Stancu-Minasian Academy of Economics Studies, Bucharest, Romania
Abstract views: 153

Abstract

Not available.

Downloads

Download data is not yet available.

References

Almogy, Y.; Levin, O., A class of fractional programming problems. Operations Res. 19 1971 57-67, MR0274021, https://doi.org/10.1287/opre.19.1.57

Anand, P.; Swarup, K., The procedure for local separable programming. Z. Angew. Math. Mech. 50 1970 320-321,MR0264987, https://doi.org/10.1002/zamm.19700500511

Arora, Savita, Aggarwal, S.P., Dynamica Programming Approach to Linear Fractional Functional Programming, Rev. Belge Statist. d'Informat. et Rech. Operat.,17 (3), 10-23 (1977).

Charnes, A.; Lemke, C. E. Minimization of nonlinear separable convex functionals. Naval Res. Logist. Quart. 1 (1954), 301-312 (1955), MR0074104, https://doi.org/10.1002/nav.3800010408

Černov, Ju. P.; Lange, È. G., A transport problem of fractional programming. (Russian) Optimal. Planirovanie No. 16 (1970), 112-132, MR0309554.

Černov, Ju. P., On fractional Programming with Linear Separable and Quadratic Functions (in Russian), Econom. i Mat. Methody 7, 721-732 (1971).

Černov, Ju. P., An application of the δ-method to the solution of fractional programming problems with separable functions. (Russian) Mathematical methods for the solution of economic problems (Suppl. to Èkonom. i Mat. Metody), No. 3 (Russian), pp. 68-73. Izdat. "Nauka", Moscow, 1972, MR0395840.

Gogia, N. K., The non-linear fractional functional programming problem with separable functions. J. Math. Sci. 4 1969 77-84, MR0269306.

Hadley, G., Nonlinear and dynamic programming. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London 1964 xi+484 pp., MR0173543.

Jagannathan, R., The Programming approach in Multiple Character Studies, Econometrica, 33 (1), 236-237 (1965a), https://doi.org/10.2307/1911898

Jagannathan, R., A Method for Solving a Nonlinear Programming Problem in Sample Surveys, Econometrica, 33 (4), 841-846 (1965b), https://doi.org/10.2307/1910360

Kaul, R. N., Datta, Neelam On the solution of separable programming problem with a fractional objective function. Cahiers Centre Études Rech. Opér. 23 (1981), no. 2, 159-169, MR0625022.

Kortanek, K. O., Evans, J. P.. Pseudo-concave programming and Lagrange regularity. Operations Res. 15 1967 882-891, MR0224374, https://doi.org/10.1287/opre.15.5.882

Miller, Clair E., The simplex method for local separable programming. 1963 Recent advances in mathematical programming pp. 89-100 McGraw-Hill, New York, MR0171624.

Stancu-Minasian, I. M., Applications of the fractional programming. Econom. Comput. Econom. Cybernet. Stud. Res. 14 (1980), no. 1, 69-86, MR0574672.

Stancu-Minasian, I. M., A survey of methods used for solving the problems of fractional programming. The linear case. II. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 25(73) (1981), no. 4, 415-430,MR0654036.

Stancu-Minasian, I.M., A Survey of Methods Used for Solving the Linear Fractional Programming Problems with several Objective Functions, Eifth symposium on Operations Research (Univ.Köln, 1980) Operations Research Verfahren, Vol. 40, 159-162, Verlag anton Hain, Königstein (1981b).

Stancu-Minasian, I. M. Fractional programming in complex space: the state of the art. Rev. Roumaine Math. Pures Appl. 26 (1981), no. 3, 481-91, MR0627298.

Stancu-Minasian, I. M., Bibliography of fractional programming, 1960-1976. Pure Appl. Math. Sci. 13 (1981), no. 1-2, 35-69, MR0610004 .

Ţigan Şt., Un algoritm pentru o problemă de programare dinamică fracţionară, Al doilea simpozion de informatică şi conducere, Cluj-Napoca, 1976, Ed. Dacia, 12-14 (1977), in Romanian

Ţigan, Şt., Asupra unor metode de rezolvare a unor probleme particulare de programare fracţionară, Informatica pentru Conducere. Orizont '81. Realizări şi aplicaţii, Cluj-Napoca, 92-93 (1981).

Wadhwa, Vijay, Programming with separable fractional functionals. J. Math. Sci. 4 1969, 51-60, MR0264990.

Downloads

Published

1985-02-01

How to Cite

Stancu-Minasian, I. M. (1985). An overview of separable fractional programming problem. Anal. Numér. Théor. Approx., 14(1), 91–96. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no1-art6

Issue

Section

Articles