Sulla convergenza di alcune formule di quadratura per il calcolo di integrali a valor principale secondo Cauchy
On the convergence of some quadrature formulas for the computation of Cauchy principal value integrals
Abstract
Not available.Downloads
References
Chawla, M. M.; Ramakrishnan, T. R., Modified Gauss-Jacobi quadrature formulas for the numerical evaluation of Cauchy type singular integrals. Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 14-21, MR0331729, https://doi.org/10.1007/bf01933113
Dzjadik, V. K.(2-AOSUK), Ivanov, V. V.(2-AOSUK-B), On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points. (Russian summary) Anal. Math. 9 (1983), no. 2, 85-97, MR0720078, https://doi.org/10.1007/bf01982005
Elliott, David; Paget, D. F., "On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals" (Numer. Math. 23 (1975), 311-319): an addendum. Numer. Math. 25 (1975/76), no. 3, 287-289, MR0411131, https://doi.org/10.1007/bf01399417
Elliott, David, Paget, D. F., "On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals" (Numer. Math. 23 (1975), 311--319): an addendum. Numer. Math. 25 (1975/76), no. 3, 287-289, MR0411131, https://doi.org/10.1007/bf01399417
Hunter, D. B., Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals. Numer. Math. 19 (1972), 419-424, MR0319355, https://doi.org/10.1007/bf01404924
Ioakimidis, N. I., A direct method for the construction of Gaussian quadrature rules for Cauchy type and finite-part integrals. Anal. Numér. Théor. Approx. 12 (1983), no. 2, 131-140, MR0743131.
Kalandija, A. I., On a direct method of solution of an equation in wing theory with an application to the theory of elasticity. (Russian) Mat. Sb. N.S. 42 (84) 1957 249-272, MR0108079.
Gonska, Heinz H., On approximation by linear operators: improved estimates. Anal. Numér. Théor. Approx. 14 (1985), no. 1, 7-32, MR0830510.
Mastroianni, G., Occorsio, M. R., An algorithm for the numerical evaluation of a Cauchy principal value integral. Ricerche Mat. 33 (1984), no. 1, 3-18, MR0795152.
Mastroianni G., Occorsio M.R., On the numerical evaluation of a Cauchy principal value integral (1984 - to appear).
Monegato, G., The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing 29 (1982), no. 4, 337-354, MR0684742, https://doi.org/10.1007/bf02246760
Piessens, Robert, Numerical evaluation of Cauchy principal values of integrals. Nordisk Tidskr. Informationsbehandling (BIT) 10 1970 476-480, MR0281348, https://doi.org/10.1007/bf01935567
Rabinowitz, Philip, Gaussian integration in the presence of a singularity. SIAM J. Numer. Anal. 4 1967 191-201, MR0213016, https://doi.org/10.1137/0704018
Sikkema, P. C., Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. (German) Numer. Math. 3 1961 107-116, MR0123128, https://doi.org/10.1007/bf01386008
Tsamasphyros, G. J.; Theocaris, P. S., On the convergence of a Gauss quadrature rule for evaluation of Cauchy type singular integrals. Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), no. 4, 458-464, MR0468120, https://doi.org/10.1007/bf01933455
Tsamasphyros, G., Theocaris, P. S., On the convergence of some quadrature rules for Cauchy principal-value and finite-part integrals. Computing 31 (1983), no. 2, 105-114, MR0718908, https://doi.org/10.1007/bf02259907
Szegő, Gábor, Orthogonal polynomials. Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975. xiii+432 pp., MR0372517.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.