Approximation of twice differentiable functions by positive linear operators

Authors

  • I. Raşa Polytechnic Institute Cluj-Napoca, Romania
Abstract views: 182

Abstract

Not available.

Downloads

References

Aramă, O., Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8 1957 195-210, MR0124674.

Bauer, Heinz, Leha, Gottlieb, Papadopoulou, Susanne, Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, 263-274, MR0544594.

Censor, Erga, Quantitative results for positive linear approximation operators. J. Approximation Theory 4 1971 442-450, MR0287234, https://doi.org/10.1016/0021-9045(71)90009-8

Devore, R., The approximation of continuous functions by positive linear operators, Lect. Notes in Math., 293, Springer Verlag, Berlin-Heidelberg-New York, 1971.

Nishishiraho, Toshihiko, Convergence of positive linear approximation processes. Tohoku Math. J. (2) 35 (1983), no. 3, 441-458, MR0711359.

Raşa, I., On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, 125-127, MR0617263.

Raşa, I., On the barycenter formula. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 163-165, MR0797978.

Shisha, O., Mond, B., The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. U.S.A. 60 1968 1196-1200, MR0230016.

Downloads

Published

1985-08-01

Issue

Section

Articles

How to Cite

Raşa, I. (1985). Approximation of twice differentiable functions by positive linear operators. Anal. Numér. Théor. Approx., 14(2), 131-135. https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no2-art6