Approximation of twice differentiable functions by positive linear operators
Abstract
Not available.Downloads
References
Aramă, O., Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8 1957 195-210, MR0124674.
Bauer, Heinz, Leha, Gottlieb, Papadopoulou, Susanne, Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, 263-274, MR0544594.
Censor, Erga, Quantitative results for positive linear approximation operators. J. Approximation Theory 4 1971 442-450, MR0287234, https://doi.org/10.1016/0021-9045(71)90009-8
Devore, R., The approximation of continuous functions by positive linear operators, Lect. Notes in Math., 293, Springer Verlag, Berlin-Heidelberg-New York, 1971.
Nishishiraho, Toshihiko, Convergence of positive linear approximation processes. Tohoku Math. J. (2) 35 (1983), no. 3, 441-458, MR0711359.
Raşa, I., On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, 125-127, MR0617263.
Raşa, I., On the barycenter formula. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 163-165, MR0797978.
Shisha, O., Mond, B., The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. U.S.A. 60 1968 1196-1200, MR0230016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.