On interpolation operators - IV (Estimates in the neighbourhood of nodal points for differentiable functions)

Authors

  • K. B. Srivastava University of Dar es Salaam, Tanzania
  • R. B. Saxena Luknow University, India
Abstract views: 219

Abstract

Not available.

Downloads

Download data is not yet available.

References

Gopengauz, I. E., On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite interval. (Russian) Mat. Zametki 1 1967 163-172, MR0208232.

Vertèsi,P.; Kiš, O. On a new interpolation process. (Russian) Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 1967 117-128, MR0251427.

Meir, A., An interpolatory rational approximation. Canad. Math. Bull. 21 (1978), no. 2, 197-200, MR0493045.

Saxena, R. B.; Srivastava, K. B., On interpolation operators. I. A proof of Jackson's theorem for differentiable functions. Anal. Numér. Théor. Approx. 7 (1978), no. 2, 211-223, MR0530751.

Saxena, R. B., Srivastava, K. B., On interpolation operators. II. A proof of Timan's theorem for differentiable functions. Anal. Numér. Théor. Approx. 8 (1979), no. 2, 215-227, MR0573982.

Srivastava, K. B., Saxena, R. B., On interpolation operators. III. A proof of Telyakovskiĭ-Gopengauz's theorem for differentiable functions. Anal. Numér. Théor. Approx. 10 (1981), no. 2, 247-262, MR0670657.

Srivastava, K. B. A proof of Telyakovski-Gopengauz theorem through interpolation. Serdica 5 (1979), no. 3, 272-279, MR0570045.

Telyakovskii, S.A., Two theorems on the approximation of fucntions by algebraic polynomials, Math. Sbornik, 70, 2 (1970), 252-265.

Downloads

Published

1985-08-01

How to Cite

Srivastava, K. B., & Saxena, R. B. (1985). On interpolation operators - IV (Estimates in the neighbourhood of nodal points for differentiable functions). Anal. Numér. Théor. Approx., 14(2), 137–145. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no2-art7

Issue

Section

Articles