The stochastic bottleneck transportation problem
Abstract
Not available.
Downloads
References
Achary, K. K., Seshan, C. R., A time minimising transportation problem with quantity dependent time. European J. Oper. Res. 7 (1981), no. 3, 290-298, MR0619619, https://doi.org/10.1016/0377-2217(81)90351-9
A.R. Barsov (1959): What is Linear Programming, Moscow 90-101 (in Russian).
Bereanu, B. On stochastic linear programming. I. Distribution problems: A single random variable. Rev. Math. Pures Appl. (Bucarest) 8 1963 683-697, MR0177806.
Bhatia, H. L., Swaroop, Kanti, Puri, M. C., A procedure for time minimization transportation problem. Indian J. Pure Appl. Math. 8 (1977), no. 8, 920-929, MR0475828.
Derigs, U., Zimmermann, U., An augmenting path method for solving linear bottleneck assignment problems. Computing 19 (1977/78), no. 4, 285-295, MR0475905, https://doi.org/10.1007/bf02252026
Garfinkel, R. S., Rao, M. R., The bottleneck transportation problem. Naval Res. Logist. Quart. 18 (1971), 465-472, MR0337282, https://doi.org/10.1002/nav.3800180404
Grabowski, W., Problem of transportation in minimum time. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 1964 107-108, MR0163766.
Grabowski, Wiesław, Transportation problem with minimization of time. (Polish. Russian, English summary) Przeglad Statyst 11 1964 333-359, MR0191644.
Hammer, Peter L., Time-minimizing transportation problems.Naval Res. Logist. Quart. 16 1969 345-357, MR0260422, https://doi.org/10.1002/nav.3800160307
Hammer, Peter L. Communication on: "The bottleneck transportation problem" and "Some remarks on the time transportation problem". Naval Res. Logist. Quart. 18 (1971), 487-490, MR0309559, https://doi.org/10.1002/nav.3800180406
A Janicki (1969): The Time Transportation Problem, M. S. Thesis, University of Wroclaw, Poland (in Polish).[12] P.L. Maggu, J. K. Sharma (1980): A Procedure for Time Minimizing Solid Transportation Problem, Pure Appl. Math. Sci., 12, (1-2), 19-27.
E.P. Niestierow (1962): Transportation Problems in Linear Programming, (Moskiw) 72-80 (in Russian).
Ramakrishnan, C. S., A note on the time minimising transportation problem. Op search 14 (1977), no. 3, 207-209, MR0459576.
Sharma, J. K., Swarup, Kanti, Time minimization in transportation problems. New Zealand Oper. Res. 6 (1978), no. 1, 75-88, MR0490681.
J.K. Sharma, K. Swarup (1977): The Time Minimization Multidimensional Transportation Problem, Journal of Eng. Production, 1, 121-129.
Sharma, J. K. A note on the time minimizing solid transportation problem. Pure Appl. Math. Sci. 7 (1978), no. 1-2, 41-42, JMR0462570.
Srinivasan, V., Thompson, G. L., Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Naval Res. Logist. Quart. 23 (1976), no. 4, 567-595, MR0446483, https://doi.org/10.1002/nav.3800230402
Stancu-Minasian, I. M., Programarea stocastică cu mai multe funcţii obiectiv. (Romanian) [Stochastic programming with multiple objective functions] With a preface by Marius Iosifescu. With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1980. 259 pp., MR0575171.
Stancu-Minasian, I. M., Ţigan, Ştefan, The minimum risk approach to special problems of mathematical programming. The distribution function of the optimal value. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 175-187, MR0797980.
Szwarc, Włodzimierz, Some remarks on the time transportation problem. Naval Res. Logist. Quart. 18 (1971), 473-485, MR0337298, https://doi.org/10.1002/nav.3800180405
W. Szwarc (1966): The Time Transportation Problem, Zastos. Mat., 8, 231-242, https://doi.org/10.4064/am-8-3-231-242
W. Szwarc (1965): Das Transportzeit problem, Mathekatik and Kybernetic in der Oekonomie, Academie Vargal Berlin, 19, 72-78.
W. Szwarc (1970): The Time Transportation Problem, Carnegie-Mellon Univeristy, Pittsburgh, Pennsylvania, Tehnical Report, No.201.
Ţigan, Ştefan, Sur un problème d'affectation. (French) Mathematica (Cluj) 11 (34) 1969 163-166, MR0266615.
U. Yechiali (1968): A Stochastic bottleneck Assignment Problem, Management Sci. 14 (11), 732-734.
Yechiali, Uri, A note on a stochastic production-maximizing transportation problem. Naval Res. Logist. Quart. 18 (1971), 429-431, MR0302156, https://doi.org/10.1002/nav.3800180313
Zimmermann, Uwe, Duality for algebraic linear programming. Linear Algebra Appl. 32 (1980), 9-31, MR0577903, https://doi.org/10.1016/0024-3795(80)90004-x
U. Zimmermann (1978): A Primal method for Solving Algebraic Transportation Problems Applied to the Bottlleneck Transportation Problem. Proc. of the Polish-Danish Mathematical Programming Seminar. Part one. Edited by J. Krarup and S. Walukiewicz. Warszawa, 139-153.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.