Strictly concave and strictly superharmonic functions
Abstract
Not available.Downloads
References
Bauer, Heinz Harmonische Räume und ihre Potentialtheorie. (German) Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung. Lecture Notes in Mathematics, No. 22 Springer-Verlag, Berlin-New York 1966 iv+175 pp., MR0210916.
Boboc, Nicu, Bucur, Gheorghe, Conuri convexe de funcţii continue pe spaţii compacte. (Romanian) [Convex cones of continuous functions on compact spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1976. 198 pp., (in Romanian) MR0470660.
Constantinescu, Corneliu, Some properties of the balayage of measures on a harmonic space. Ann. Inst. Fourier (Grenoble) 17 1967 fasc. 1, pp. 273-293, MR0227449, https://doi.org/10.5802/aif.257
Constantinescu, Corneliu; Cornea, Aurel Potential theory on harmonic spaces. With a preface by H. Bauer. Die Grundlehren der mathematischen Wissenschaften, Band 158. Springer-Verlag, New York-Heidelberg, 1972. viii+355 pp., MR0419799.
Edwards, D. A. Minimum-stable wedges of semicontinuous functions. Math. Scand. 19 1966, pp. 15-26, MR0215063, https://doi.org/10.7146/math.scand.a-10792
Flösser, H.-O.; Irmisch, R.; Roth, W. Infimum-stable convex cones and approximation. Proc. London Math. Soc. (3) 42 (1981), no. 1, pp. 104-120, MR0602125, https://doi.org/10.1112/plms/s3-42.1.104
Helms, L. L. Introduction to potential theory. Pure and Applied Mathematics, Vol. XXII Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney 1969 ix+282 pp., MR0261018.
Mokobodzki, Gabriel; Sibony, Daniel Principe du minimum et maximalité en théorie du potentiel. (French) Ann. Inst. Fourier (Grenoble) 17 1967 fasc. 1, pp. 401-441, MR0226053, https://doi.org/10.5802/aif.262
Raşa, I., On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 125-127, MR0617263.
Raşa, I. On a measure-theoretical concept of convexity. Anal. Numér. Théor. Approx. 10 (1981), no. 2, pp. 217-224, MR0670654.
Raşa, I. On the barycenter formula. Anal. Numér. Théor. Approx. 13 (1984), no. 2, pp. 163--165, MR0797978.
Raşa, I. Generalized strictly concave functions. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), pp. 177-180, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0842233.
Wittmann, Rainer Shilov points and Shilov boundaries. Math. Ann. 263 (1983), no. 2, pp. 237-250, MR0698006, https://doi.org/10.1007/bf01456884
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.