Strictly concave and strictly superharmonic functions

Authors

  • I. Raşa Polytechnic Institute, Cluj-Napoca, Romania
Abstract views: 182

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bauer, Heinz Harmonische Räume und ihre Potentialtheorie. (German) Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung. Lecture Notes in Mathematics, No. 22 Springer-Verlag, Berlin-New York 1966 iv+175 pp., MR0210916.

Boboc, Nicu, Bucur, Gheorghe, Conuri convexe de funcţii continue pe spaţii compacte. (Romanian) [Convex cones of continuous functions on compact spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1976. 198 pp., (in Romanian) MR0470660.

Constantinescu, Corneliu, Some properties of the balayage of measures on a harmonic space. Ann. Inst. Fourier (Grenoble) 17 1967 fasc. 1, pp. 273-293, MR0227449, https://doi.org/10.5802/aif.257

Constantinescu, Corneliu; Cornea, Aurel Potential theory on harmonic spaces. With a preface by H. Bauer. Die Grundlehren der mathematischen Wissenschaften, Band 158. Springer-Verlag, New York-Heidelberg, 1972. viii+355 pp., MR0419799.

Edwards, D. A. Minimum-stable wedges of semicontinuous functions. Math. Scand. 19 1966, pp. 15-26, MR0215063, https://doi.org/10.7146/math.scand.a-10792

Flösser, H.-O.; Irmisch, R.; Roth, W. Infimum-stable convex cones and approximation. Proc. London Math. Soc. (3) 42 (1981), no. 1, pp. 104-120, MR0602125, https://doi.org/10.1112/plms/s3-42.1.104

Helms, L. L. Introduction to potential theory. Pure and Applied Mathematics, Vol. XXII Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney 1969 ix+282 pp., MR0261018.

Mokobodzki, Gabriel; Sibony, Daniel Principe du minimum et maximalité en théorie du potentiel. (French) Ann. Inst. Fourier (Grenoble) 17 1967 fasc. 1, pp. 401-441, MR0226053, https://doi.org/10.5802/aif.262

Raşa, I., On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 125-127, MR0617263.

Raşa, I. On a measure-theoretical concept of convexity. Anal. Numér. Théor. Approx. 10 (1981), no. 2, pp. 217-224, MR0670654.

Raşa, I. On the barycenter formula. Anal. Numér. Théor. Approx. 13 (1984), no. 2, pp. 163--165, MR0797978.

Raşa, I. Generalized strictly concave functions. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), pp. 177-180, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0842233.

Wittmann, Rainer Shilov points and Shilov boundaries. Math. Ann. 263 (1983), no. 2, pp. 237-250, MR0698006, https://doi.org/10.1007/bf01456884

Downloads

Published

1986-02-01

How to Cite

Raşa, I. (1986). Strictly concave and strictly superharmonic functions. Anal. Numér. Théor. Approx., 15(1), 69–74. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1986-vol15-no1-art10

Issue

Section

Articles