A new algorithm for periodic spline solutions to second order differential equations

Authors

  • S. Sallam University of Kuwait, Kuwait
Abstract views: 137

Abstract

Not available.

Downloads

Download data is not yet available.

References

Burkowski, F. J.; Cowan, D. D. The numerical derivation of a periodic solution of a second order differential difference equation. SIAM J. Numer. Anal. 10 (1973), pp. 489-495, MR0329267, https://doi.org/10.1137/0710044

Elnaggar, A., Solutions harmoniques et sous-harmoniques de l'équation x+k₁x+k₂x³cos t=0, The 14th. Ann. Conf. on Stat. Com. Sci., Oper. Res. Maths., Cairo Univ., 1979.

Petzold, Linda R. An efficient numerical method for highly oscillatory ordinary differential equations. SIAM J. Numer. Anal. 18 (1981), no. 3, pp. 455-479, MR0615526, https://doi.org/10.1137/0718030

Pun, Lucas Initial conditioned solutions of a second-order nonlinear conservative differential equation with a periodically varying coefficient. J. Franklin Inst. 295 (1973), pp. 193-216, MR0333366, https://doi.org/10.1016/0016-0032(73)90164-6

Sallam, S. On the stability of quasidouble step spline function approximations for solutions of initial value problems. Acta Math. Acad. Sci. Hungar. 36 (1980), no. 3-4, pp. 207-210 (1981), MR0612191, https://doi.org/10.1007/bf01898134

Sallam, S., On the stability of quasidouble step spline approximation for solutions of y⁽ⁿ⁾=f(x,y,...,y⁽ⁿ⁻¹⁾). Proceeding of the Institute of Statistical Studies. Cairo University (1980), pp. 326-330.

Downloads

Published

1986-02-01

How to Cite

Sallam, S. (1986). A new algorithm for periodic spline solutions to second order differential equations. Anal. Numér. Théor. Approx., 15(1), 75–80. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1986-vol15-no1-art11

Issue

Section

Articles