Some remarks on a theorem on best approximations

Authors

  • Olga Hadžić University of Novi Sad, Serbia
Abstract views: 149

Abstract

Not available.

Downloads

Download data is not yet available.

References

Allen, George Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl. 58 (1977), no. 1, pp. 1-10, MR0513305, https://doi.org/10.1016/0022-247x(77)90222-0

Dugundji, James; Granas, Andrzej, Fixed point theory. I., Monografie Matematyczne [Mathematical Monographs], 61. Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. 209 pp. ISBN: 83-01-01142-4, MR0660439.

Fan, Ky Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112 1969, pp. 234-240, MR0251603, https://doi.org/10.1007/bf01110225

Fan, Ky Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984), no. 4, pp. 519-537, MR0735533, https://doi.org/10.1007/bf01458545

Hadžić, Olga Common fixed point theorems in convex metric spaces. Numerical methods and approximation theory, II (Novi Sad, 1985), pp. 73-82, Univ. Novi Sad, Novi Sad, 1985, MR0822486.

Hadžić, Olga Fixed point theory in topological vector spaces. Univerzitet u Novom Sadu, Institut za Matematiku, Novi Sad, 1984. ii+337 pp., MR0789224.

Horvath, Charles Points fixes et coïncidences pour les applications multivoques sans convexité. (French) [Fixed points and coincidences for multivalued maps without convexity] C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, pp. 403-406, MR0703907.

Kaczynski, Tomasz(3-MTRL), Quelques théorèmes de points fixes dans des espaces ayant suffisamment de fonctionnelles linéaires. (French. English summary) [Some fixed-point theorems in spaces with sufficiently many linear functionals] C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 21, pp. 873-874, MR0715324.

Knaster, B., Kuratowski, C., Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), pp. 132-137, https://doi.org/10.4064/fm-14-1-132-137

Lassonde, Marc(3-MTRL), On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl. 97 (1983), no. 1, pp. 151-201, MR0721236, https://doi.org/10.1016/0022-247x(83)90244-5

Naimpally, S. A.; Singh, K. L.; Whitfield, J. H. M. Common fixed points for nonexpansive and asymptotically nonexpansive mappings. Comment. Math. Univ. Carolin. 24 (1983), no. 2, pp. 287-300, MR0711266.

Prolla, João B. Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5 (1982/83), no. 4, pp. 449-455, MR0703107, https://doi.org/10.1080/01630568308816149

Rhoades, B. E.; Singh, K. L.; Whitfield, J. H. M. Fixed points for generalized nonexpansive mappings. Comment. Math. Univ. Carolin. 23 (1982), no. 3, pp. 443-451, MR0677853.

Rus, I. A., Principii şi aplicaţii ale t eoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979, 261. pp.

Sadoveanu, Viorel(R-CLUJ), Coincidence theorems. Seminar on fixed point theory, pp. 158-159, Preprint, 83-3, Univ. "Babeş-Bolyai", Cluj-Napoca, 1983, MR0782685.

Takahashi, W., A convexity in metric spaces and nonexpansive mappings, I. Kodai Math. Sem. Rep., 29 (1977), pp. 62-70.

Talman, Louis A. Fixed points for condensing multifunctions in metric spaces with convex structure. Kōdai Math. Sem. Rep. 29 (1977), no. 1-2, pp. 62-70, MR0463985.

Downloads

Published

1986-02-01

How to Cite

Hadžić, O. (1986). Some remarks on a theorem on best approximations. Anal. Numér. Théor. Approx., 15(1), 27–35. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1986-vol15-no1-art4

Issue

Section

Articles