Some remarks on a theorem on best approximations
Abstract
Not available.Downloads
References
Allen, George Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl. 58 (1977), no. 1, pp. 1-10, MR0513305, https://doi.org/10.1016/0022-247x(77)90222-0
Dugundji, James; Granas, Andrzej, Fixed point theory. I., Monografie Matematyczne [Mathematical Monographs], 61. Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. 209 pp. ISBN: 83-01-01142-4, MR0660439.
Fan, Ky Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112 1969, pp. 234-240, MR0251603, https://doi.org/10.1007/bf01110225
Fan, Ky Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984), no. 4, pp. 519-537, MR0735533, https://doi.org/10.1007/bf01458545
Hadžić, Olga Common fixed point theorems in convex metric spaces. Numerical methods and approximation theory, II (Novi Sad, 1985), pp. 73-82, Univ. Novi Sad, Novi Sad, 1985, MR0822486.
Hadžić, Olga Fixed point theory in topological vector spaces. Univerzitet u Novom Sadu, Institut za Matematiku, Novi Sad, 1984. ii+337 pp., MR0789224.
Horvath, Charles Points fixes et coïncidences pour les applications multivoques sans convexité. (French) [Fixed points and coincidences for multivalued maps without convexity] C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, pp. 403-406, MR0703907.
Kaczynski, Tomasz(3-MTRL), Quelques théorèmes de points fixes dans des espaces ayant suffisamment de fonctionnelles linéaires. (French. English summary) [Some fixed-point theorems in spaces with sufficiently many linear functionals] C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 21, pp. 873-874, MR0715324.
Knaster, B., Kuratowski, C., Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), pp. 132-137, https://doi.org/10.4064/fm-14-1-132-137
Lassonde, Marc(3-MTRL), On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl. 97 (1983), no. 1, pp. 151-201, MR0721236, https://doi.org/10.1016/0022-247x(83)90244-5
Naimpally, S. A.; Singh, K. L.; Whitfield, J. H. M. Common fixed points for nonexpansive and asymptotically nonexpansive mappings. Comment. Math. Univ. Carolin. 24 (1983), no. 2, pp. 287-300, MR0711266.
Prolla, João B. Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5 (1982/83), no. 4, pp. 449-455, MR0703107, https://doi.org/10.1080/01630568308816149
Rhoades, B. E.; Singh, K. L.; Whitfield, J. H. M. Fixed points for generalized nonexpansive mappings. Comment. Math. Univ. Carolin. 23 (1982), no. 3, pp. 443-451, MR0677853.
Rus, I. A., Principii şi aplicaţii ale t eoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979, 261. pp.
Sadoveanu, Viorel(R-CLUJ), Coincidence theorems. Seminar on fixed point theory, pp. 158-159, Preprint, 83-3, Univ. "Babeş-Bolyai", Cluj-Napoca, 1983, MR0782685.
Takahashi, W., A convexity in metric spaces and nonexpansive mappings, I. Kodai Math. Sem. Rep., 29 (1977), pp. 62-70.
Talman, Louis A. Fixed points for condensing multifunctions in metric spaces with convex structure. Kōdai Math. Sem. Rep. 29 (1977), no. 1-2, pp. 62-70, MR0463985.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.