Voronovskaja-type theorems for a certain non-positive linear operator
Abstract
Not available.Downloads
References
Badea, Ion The modulus of continuity in the sense of Bögel, and some applications to approximation by a Bernšteĭn operator. (Romanian) Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 18 (1973), no. 2, pp. 69-78, MR0382921.
Badea, Ion The modulus of oscillation for functions of two variables, and some applications to approximation by Bernšteĭn operators. (Romanian) An. Univ. Craiova Ser. a V-a no. 2, 43-54. (1974), MR0410177.
Badea, I. and Oprea, M., On approximation by Bernstein type polynomials (in Romanian), Bul. Inst. Petrol şi Gaze Ploieşti, 4, pp. 83-86 (1976).
Bögel, Karl, Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veränderlichen. (German) J. Reine Angew. Math. 170 (1934), pp. 197-217, MR1581409, https://doi.org/10.1515/crll.1934.170.197
Bögel, Karl, Über mehrdimensionale Differentiation, Integration und beschränkte Variation. (German) J. Reine Angew. Math. 173 (1935), pp. 5-30, MR1581453, https://doi.org/10.1515/crll.1935.173.5
Bögel, Karl, Über die mehrdimensionale Differentiation. (German) Jber. Deutsch. Math.-Verein. 65 1962/1963 Abt. 1, pp. 45-71, MR0146311.
Gonska, H.H., On approximation in C(X), Drexel University, Department of Mathematics and Computer Science, Technical Report 5-84 (1984); or in Proceed. Int. Conf. on Constructive Theory of Functions, Golden Sands (Varna, Bulgaria), May 27 - June 2, 1984 (to appear).
Natanson, I. P. Constructive function theory. Vol. I. Uniform approximation. Translated from the Russian by Alexis N. Obolensky Frederick Ungar Publishing Co., New York 1964 ix+232 pp., MR0196340.
Schurer, F.; Steutel, F. W. The degree of local approximation of functions in C1[0,1] by Bernstein polynomials. J. Approximation Theory 19 (1977), no. 1, pp. 69-82, MR0437992.
Sikkema, P. C. On some linear positive operators. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 1970, pp. 327-337, MR0270038, https://doi.org/10.1016/s1385-7258(70)80037-3
Voronovskaja, E. W., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR 79, pp. 79-85 (1932).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.