A \(K\)-monotone best approximation operator which is neither monotone and (essentially) nor (O)-monotone

Authors

  • Radu Precup High School of Computer Science, Cluj-Napoca, Romania
Abstract views: 163

Abstract

Not available.

Downloads

Download data is not yet available.

References

Browder, Felix E. Problèmes nonlinéaires. (French) Séminaire de Mathématiques Supérieures, No. 15 (Été, 1965) Les Presses de l'Université de Montréal, Montreal, Que. 1966, 153 pp., MR0250140.

Pascali, Dan, Sburlan, Silviu, Nonlinear mappings of monotone type. Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. x+341 pp. ISBN: 90-286-0118-*,MR0531036.

Precup, R., O generalizare a noţiunii de monotonie în sensul lui Minty-Browder, Lucrările seminarului itinerant de ecuaţii funcţionale, aproximare şi convexitate, Cluj-Napoca, 54-64 (1978).

Precup, R., Proprietăţi de alură şi unele aplicaţii ale lor, Dissertation, Cluj-Napoca, 1985 (in Romanian).

Downloads

Published

1986-08-01

How to Cite

Precup, R. (1986). A \(K\)-monotone best approximation operator which is neither monotone and (essentially) nor (O)-monotone. Anal. Numér. Théor. Approx., 15(2), 153–162. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1986-vol15-no2-art10

Issue

Section

Articles