Sets on which concave functions are affine and Korovkin closures
Abstract
Not available.Downloads
References
Bauer, Heinz; Leha, Gottlieb; Papadopoulou, Susanne Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, pp. 263-274, MR0544594, https://doi.org/10.1007/bf01214516
Boboc, Nicu; Bucur, Gheorghe Conuri convexe de funcţii continue pe spaţii compacte. (Romanian) [Convex cones of continuous functions on compact spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1976. 198 pp., MR0470660.
Meyer, Paul-André Probabilités et potentiel. (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles, No. 1318 Hermann, Paris 1966, 320 pp., MR0205287.
Phelps, Robert R. Lectures on Choquet's theorem. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1966 v+130 pp., MR0193470.
Raşa, I. On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 125-127, MR0617263.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.