On the order of simultaneous approximation of bivariate functions by Bernstein operators
Abstract
Not available.Downloads
References
Badea, I., Approximation of vector functions of one and two variables by Bernstein polynomials (in Romanian), Doctoral thesis, Univeristy of Craiova, 1974.
Badea, Ion The modulus of oscillation for functions of two variables, and some applications to approximation by Bernšteĭn operators. (Romanian) An. Univ. Craiova Ser. a V-a no. 2, pp. 43-54. (1974), MR0410177.
Badea, Ion, A theorem of Popoviciu on the approximation of functions by means of the Bernstein operators. (Romanian. French summary) Bul. Ştiinţ. Inst. Politehn. Cluj-Napoca Ser. Electrotehn.-Energet.-Inform. 25 (1982), pp. 7-10, MR0784106.
Badea, I. and Badea, C., On an inequality of Sikkema concerning the approximation with Bernstein operator (submitted for publication).
Gonska, Heinz H. Quantitative Korovkin type theorems on simultaneous approximation. Math. Z. 186 (1984), no. 3, pp. 419-433, MR0744832, https://doi.org/10.1007/bf01174895
Ipatov, A. F. Estimation of the error and order of approximation of functions of two variables by Bernstein polynomials. (Russian) Uč. Zap. Petrozavodsk. Gos. Univ. 4 1955 no. 4, pp. 31-48 (1957),MR0125378.
Kingsley, Edward H. Bernstein polynomials for functions of two variables of class C(k). Proc. Amer. Math. Soc. 2, (1951), pp. 64-71, MR0042548, https://doi.org/10.1090/s0002-9939-1951-0042548-7
Knoop, Hans-Bernd; Pottinger, Peter, Ein Satz vom Korovkin-Typ für Ck-Räume. (German) Math. Z. 148 (1976), no. 1, pp. 23-32, MR0415168, https://doi.org/10.1007/bf01187866
Moldovan, Grigor On the approximation of continuous functions by Bernstein polynomials. (Romanian) Studia Univ. Babecedla s-Bolyai Ser. Math.-Phys. 11 1966 no. 1, pp. 63-71, MR0203313.
Moldovan, Gr., L'évaluation de l'erreur de l'approximation d'une fonction continue par certains opérateurs linéaires positifs. (French) Mathematica (Cluj) 22(45) (1980), no. 1, pp. 85-95, MR0618033.
Moldovan, Grigor; Rîp, Ilie On an inequality in the theory of approximation of functions of two variables by Bernstein polynomials. (Romanian) Stud. Cerc. Mat. 18 1966, pp. 845-853, MR0213792.
Schurer, F., On the order of approximation with generalized Bernstein polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 1962 484-488, MR0141922, https://doi.org/10.1016/s1385-7258(62)50046-2
Sikkema, P. C., Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen. (German) Numer. Math. 3 1961, pp. 107-116, MR0123128, https://doi.org/10.1007/bf01386008
Stancu, D. D. Sur l'approximation des dérivées des fonctions par les dérivées correspondantes de certaines polynomes du type Bernstein. (French) Mathematica (Cluj) 2 (25) 1960, pp. 335-348, MR0130516.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.