Representation of continuous linear functionals on smooth reflexive Banach spaces

Authors

  • Sever Silvestru Dragomir Băile Herculane, Romania
Abstract views: 141

Abstract

Not available.

Downloads

Download data is not yet available.

References

Dincă, G., Metode variaţionale şi aplicaţii. Ed. Tehnică, Bucureşti, 1980.

Golomb, M.; Tapia, R. A., The metric gradient in normed linear spaces. Numer. Math. 20 (1972/73), 115-124,MR0324406, https://doi.org/10.1007/bf01404401

Lindenstrauss, J.; Tzafriri, L. On the complemented subspaces problem. Israel J. Math. 9 1971, pp. 263-269, MR0276734, https://doi.org/10.1007/bf02771592

Lumer, G. Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 1961, pp. 29-43, MR0133024, https://doi.org/10.1090/s0002-9947-1961-0133024-2

Niculescu, Constantin; Popa, Nicolae Elemente de teoria spaţiilor Banach. (Romanian) [Elements of the theory of Banach spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1981, 239 pp.,MR0616450.

Rosca, Ioan, Semi-produit scalaire et représentations de type de Riesz pour les fonctionnelles linéaires et bornées sur les espaces normés. (French. English summary) C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Ai, A79-A81, MR0445280.

Tapia, R. A. A characterization of inner product spaces. Proc. Amer. Math. Soc. 41 (1973), pp. 569-574, MR0341041, https://doi.org/10.1090/s0002-9939-1973-0341041-6

Downloads

Published

1987-02-01

How to Cite

Dragomir, S. S. (1987). Representation of continuous linear functionals on smooth reflexive Banach spaces. Anal. Numér. Théor. Approx., 16(1), 19–28. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1987-vol16-no1-art3

Issue

Section

Articles