Representation of continuous linear functionals on smooth reflexive Banach spaces
Abstract
Not available.Downloads
References
Dincă, G., Metode variaţionale şi aplicaţii. Ed. Tehnică, Bucureşti, 1980.
Golomb, M.; Tapia, R. A., The metric gradient in normed linear spaces. Numer. Math. 20 (1972/73), 115-124,MR0324406, https://doi.org/10.1007/bf01404401
Lindenstrauss, J.; Tzafriri, L. On the complemented subspaces problem. Israel J. Math. 9 1971, pp. 263-269, MR0276734, https://doi.org/10.1007/bf02771592
Lumer, G. Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 1961, pp. 29-43, MR0133024, https://doi.org/10.1090/s0002-9947-1961-0133024-2
Niculescu, Constantin; Popa, Nicolae Elemente de teoria spaţiilor Banach. (Romanian) [Elements of the theory of Banach spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1981, 239 pp.,MR0616450.
Rosca, Ioan, Semi-produit scalaire et représentations de type de Riesz pour les fonctionnelles linéaires et bornées sur les espaces normés. (French. English summary) C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Ai, A79-A81, MR0445280.
Tapia, R. A. A characterization of inner product spaces. Proc. Amer. Math. Soc. 41 (1973), pp. 569-574, MR0341041, https://doi.org/10.1090/s0002-9939-1973-0341041-6
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.