Computational aspects of some iterative methods for bounding the inverse of a matrix

Authors

  • J. Herzberger Universitat Oldenburg, Germany
Abstract views: 137

Abstract

Not available.

Downloads

Download data is not yet available.

References

Albrecht, J. Bemerkungen zum Iterationsverfahren von Schulz zur Matrixinversion. (German) Z. Angew. Math. Mech. 41 196, pp. 262-263, MR0128605, https://doi.org/10.1002/zamm.19610410605

Alefeld, G., Herzberger, J., Matrixinverierung mit Fellererfassung, Elektron. Datenverarbeitung 9, pp. 410-416 (1970).

Alefeld, Götz(D-KLRH-1), Herzberger, Jürgen(D-OLD), Introduction to interval computations. Translated from the German by Jon Rokne. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. xviii+333 pp. ISBN: 0-12-049820-0 65-01 (65G10), MR0733988.

Herzberger, J. On the R-order of some recurrences with applications to inclusion-methods. II. Computing 37 (1986), no. 3, pp. 255-259, MR0867571, https://doi.org/10.1007/bf02252516

Herzberger, J. On the monotonicity of the interval versions of Schulz's method. II. Computing 39 (1987), no. 4, pp. 371-375, MR0923462, https://doi.org/10.1007/bf02239979

Herzberger, J. Zur Montonie der intervallmäßigen Schulz-Verfahren höherer Ordnung. (German) [On the monotonicity of interval-type Schultz methods of higher order] Z. Angew. Math. Mech. 67 (1987), no. 2, pp. 137-138, MR0887527, https://doi.org/10.1002/zamm.19870670217

Köster, M., Ein effizienter Algorithmus zur iterativen Einschliessung der inversen Matrix, Leitsungsnachweis, Universität Oldenburg, 1985.

Kulisch, U., Ullrich, Ch., (Edit.), Wissenschaftliches Rechnen und Programmersprachen, B.G. Teubner, Stuttgart, 1982.

Schmidt, J. W., Monotone Eingrenzung von inversen Elementen durch ein quadratisch konvergentes Verfahren ohne Durchschnittsbildung. (German) Z. Angew. Math. Mech. 60 (1980), no. 4, pp. 202-204, MR0588313, https://doi.org/10.1002/zamm.19800600406

Traub, J. F. Iterative methods for the solution of equations. Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xviii+310 pp., MR0169356.

Downloads

Published

1987-02-01

How to Cite

Herzberger, J. (1987). Computational aspects of some iterative methods for bounding the inverse of a matrix. Anal. Numér. Théor. Approx., 16(1), 41–46. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1987-vol16-no1-art6

Issue

Section

Articles