A new operator of Bernstein type
Abstract
Not available.Downloads
References
Baskakov, V. A., An instance of a sequence of linear positive operators in the space of continuous functions. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 113 1957 249-251, MR0094640.
Berens, H., DeVore, R., A characterization of Bernšteĭn polynomials. Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pp. 213-219, Academic Press, New York-London, 1980, MR0602718.
S. N. Bernstein, Démonstration du theoreme de Weierstrass, fondée sur le calcul des probabilités, Commun. Soc. Math. Karkov, 13, (2), 1-2 (1912).
Butzer, P. L. Linear combinations of Bernstein polynomials. Canadian J. Math. 5, (1953), pp. 559-567, MR0058023, https://doi.org/10.4153/cjm-1953-063-7
Felbecker, Günter, Linearkombinationen von iterierten Bernsteinoperatoren. (German. English summary) Manuscripta Math. 29 (1979), no. 2-4, pp. 229-248, MR0545043, https://doi.org/10.1007/bf01303629
Frenţiu, M., Linear combinations of Bernšteĭn polynomials and of Mirakjan operators. (Romanian. Russian, French summary) Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 15 1970 no. 1, pp. 63-68, MR0267325.
Gonska, Heinz H.; Meier, Jutta A bibliography on approximation of functions by Bernstein type operators (1955-1982). Approximation theory, IV (College Station, Tex., 1983), pp. 739-785, Academic Press, New York, 1983, MR0754423.
Kelisky, R. P.; Rivlin, T. J., Iterates of Bernstein polynomials. Pacific J. Math. 21 1967, pp. 511-520, MR0212457, https://doi.org/10.2140/pjm.1967.21.511
Meyer-König, W.; Zeller, K. Bernsteinsche Potenzreihen. (German) Studia Math. 19 1960, pp. 89-94, MR0111965, https://doi.org/10.4064/sm-19-1-89-94
Lorentz, G. G. Bernstein polynomials. Mathematical Expositions, no. 8. University of Toronto Press, Toronto, 1953. x+130 pp., MR0057370.
May, C. P. Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math. 28 (1976), no. 6, pp. 1224-1250, MR0435682, https://doi.org/10.4153/cjm-1976-123-8
Mastroianni, Giuseppe; Occorsio, Mario Rosario, A generalization of the Bernšteĭn operator. (Italian. English summary) Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), pp. 151-169 (1978), MR0501653.
G. Mastroianni, Sui resti di alcune forme lineari di approssimazione Calcolo 14, pp. 343-368, (1978).
G. Mastroianni, Su un operatore lienare e positivo, Rend. Accad. Sc. Mat. Fis. Nat. Napoli, 46, pp. 161-176 (1977), https://doi.org/10.4171/rlm/700
Micchelli, C. A. The saturation class and iterates of the Bernstein polynomials. Collection of articles dedicated to Isaac Jacob Schoenberg on his 70th birthday, I. J. Approximation Theory 8 (1973), pp. 1-18, MR0344757, https://doi.org/10.1016/0021-9045(73)90028-2
Nagel, Josef Asymptotic properties of powers of Bernšteĭn operators. J. Approx. Theory 29 (1980), no. 4, pp. 323-335, MR0598726, https://doi.org/10.1016/0021-9045(80)90120-3
Passow, Eli Some unusual Bernstein polynomials. Approximation theory, IV (College Station, Tex., (1983), pp. 649-652, Academic Press, New York, 1983, MR0754406.
T. Popoviciu, Sur l'approximation des fonctions convex d'ordre superieur, Mathematica, 10, pp. 49-50 (1935).
Popoviciu, Tiberiu, Sur le reste dans certaines formules linéaires d'approximation de l'analyse. (French) Mathematica (Cluj) 1 (24) 1959, pp. 95-142, MR0129531.
Schoenberg, I. J. On spline functions. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 255-291 Academic Press, New York, MR0223801.
Stancu, D. D. Evaluation of the remainder term in approximation formulas by Benstein polynomials. Math. Comp. 17 1963, pp. 270-278, MR0179524, https://doi.org/10.1090/s0025-5718-1963-0179524-6
Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernšteĭn polynomials. Calcolo 16 (1979), no. 4, pp. 431-445 (1980), MR0592481, https://doi.org/10.1007/bf02576641
Stancu, D. D. Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 13 1968, pp. 1173-1194, MR0238001.
Stancu, D. D. Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roumaine Math. Pures Appl. 14 1969, pp. 673-691, MR0247338.
Stancu, D. D. Approximation of functions by means of some new classes of positive linear operators. Numerische Methoden der Approximationstheorie, Band 1 (Tagung, Math. Forschungsinst., Oberwolfach, 1971), pp. 187-203. Internat. Schriftenreihe Numer. Math., Band 16, Birkhäuser, Basel, 1972, MR0380207.
Szasz, Otto Generalization of S. Bernstein's polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, (1950), pp. 239-245, MR0045863, https://doi.org/10.6028/jres.045.024
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.