A new operator of Bernstein type

Authors

  • G. Mastroianni Univesita di Napoli, Italy
  • M. R. Occorsio Universita di Napoli, Italy
Abstract views: 202

Abstract

Not available.

Downloads

Download data is not yet available.

References

Baskakov, V. A., An instance of a sequence of linear positive operators in the space of continuous functions. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 113 1957 249-251, MR0094640.

Berens, H., DeVore, R., A characterization of Bernšteĭn polynomials. Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pp. 213-219, Academic Press, New York-London, 1980, MR0602718.

S. N. Bernstein, Démonstration du theoreme de Weierstrass, fondée sur le calcul des probabilités, Commun. Soc. Math. Karkov, 13, (2), 1-2 (1912).

Butzer, P. L. Linear combinations of Bernstein polynomials. Canadian J. Math. 5, (1953), pp. 559-567, MR0058023, https://doi.org/10.4153/cjm-1953-063-7

Felbecker, Günter, Linearkombinationen von iterierten Bernsteinoperatoren. (German. English summary) Manuscripta Math. 29 (1979), no. 2-4, pp. 229-248, MR0545043, https://doi.org/10.1007/bf01303629

Frenţiu, M., Linear combinations of Bernšteĭn polynomials and of Mirakjan operators. (Romanian. Russian, French summary) Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 15 1970 no. 1, pp. 63-68, MR0267325.

Gonska, Heinz H.; Meier, Jutta A bibliography on approximation of functions by Bernstein type operators (1955-1982). Approximation theory, IV (College Station, Tex., 1983), pp. 739-785, Academic Press, New York, 1983, MR0754423.

Kelisky, R. P.; Rivlin, T. J., Iterates of Bernstein polynomials. Pacific J. Math. 21 1967, pp. 511-520, MR0212457, https://doi.org/10.2140/pjm.1967.21.511

Meyer-König, W.; Zeller, K. Bernsteinsche Potenzreihen. (German) Studia Math. 19 1960, pp. 89-94, MR0111965, https://doi.org/10.4064/sm-19-1-89-94

Lorentz, G. G. Bernstein polynomials. Mathematical Expositions, no. 8. University of Toronto Press, Toronto, 1953. x+130 pp., MR0057370.

May, C. P. Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math. 28 (1976), no. 6, pp. 1224-1250, MR0435682, https://doi.org/10.4153/cjm-1976-123-8

Mastroianni, Giuseppe; Occorsio, Mario Rosario, A generalization of the Bernšteĭn operator. (Italian. English summary) Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), pp. 151-169 (1978), MR0501653.

G. Mastroianni, Sui resti di alcune forme lineari di approssimazione Calcolo 14, pp. 343-368, (1978).

G. Mastroianni, Su un operatore lienare e positivo, Rend. Accad. Sc. Mat. Fis. Nat. Napoli, 46, pp. 161-176 (1977), https://doi.org/10.4171/rlm/700

Micchelli, C. A. The saturation class and iterates of the Bernstein polynomials. Collection of articles dedicated to Isaac Jacob Schoenberg on his 70th birthday, I. J. Approximation Theory 8 (1973), pp. 1-18, MR0344757, https://doi.org/10.1016/0021-9045(73)90028-2

Nagel, Josef Asymptotic properties of powers of Bernšteĭn operators. J. Approx. Theory 29 (1980), no. 4, pp. 323-335, MR0598726, https://doi.org/10.1016/0021-9045(80)90120-3

Passow, Eli Some unusual Bernstein polynomials. Approximation theory, IV (College Station, Tex., (1983), pp. 649-652, Academic Press, New York, 1983, MR0754406.

T. Popoviciu, Sur l'approximation des fonctions convex d'ordre superieur, Mathematica, 10, pp. 49-50 (1935).

Popoviciu, Tiberiu, Sur le reste dans certaines formules linéaires d'approximation de l'analyse. (French) Mathematica (Cluj) 1 (24) 1959, pp. 95-142, MR0129531.

Schoenberg, I. J. On spline functions. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 255-291 Academic Press, New York, MR0223801.

Stancu, D. D. Evaluation of the remainder term in approximation formulas by Benstein polynomials. Math. Comp. 17 1963, pp. 270-278, MR0179524, https://doi.org/10.1090/s0025-5718-1963-0179524-6

Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernšteĭn polynomials. Calcolo 16 (1979), no. 4, pp. 431-445 (1980), MR0592481, https://doi.org/10.1007/bf02576641

Stancu, D. D. Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 13 1968, pp. 1173-1194, MR0238001.

Stancu, D. D. Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roumaine Math. Pures Appl. 14 1969, pp. 673-691, MR0247338.

Stancu, D. D. Approximation of functions by means of some new classes of positive linear operators. Numerische Methoden der Approximationstheorie, Band 1 (Tagung, Math. Forschungsinst., Oberwolfach, 1971), pp. 187-203. Internat. Schriftenreihe Numer. Math., Band 16, Birkhäuser, Basel, 1972, MR0380207.

Szasz, Otto Generalization of S. Bernstein's polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, (1950), pp. 239-245, MR0045863, https://doi.org/10.6028/jres.045.024

Downloads

Published

1987-02-01

How to Cite

Mastroianni, G., & Occorsio, M. R. (1987). A new operator of Bernstein type. Anal. Numér. Théor. Approx., 16(1), 55–63. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1987-vol16-no1-art9

Issue

Section

Articles