Some generalizations of Jessen's inequality
Abstract
Not available.Downloads
References
Beesack, Paul R., Pečarić, Josip E., On Jessen's inequality for convex functions. J. Math. Anal. Appl. 110 (1985), no. 2, pp. 536-552, MR0805275, https://doi.org/10.1016/0022-247x(85)90315-4
Bojanic, R.; Roulier, J. Approximation of convex functions by convex splines and convexity preserving continuous linear operators. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 2, pp. 143-150 (1975), MR0377354.
Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica, 10 (1935), pp. 49-54.
Popoviciu, Tiberiu Sur certaines inégalités qui caractérisent les fonctions convexes. An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.) 11B 1965, pp. 155-164, MR0206178.
Toader, Gh. On the convexity of order two of functions. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1987), pp. 287-290, Preprint, 87-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1987, MR0993547.
Toda, K., A method of approximation of convex functions, Tòhoku Math. J., 42 (1936), pp. 311-317.
Vasić, Petar M., Lacković, Ivan B., Notes on convex functions. II. On continuous linear operators defined on a cone of convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), pp. 53-59 (1979), MR0580422.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.