Improvement of the area of convergence of the AOR method

Authors

  • L. J. Cvetković University of Novi Sad, Serbia
  • D. Herceg University of Novi Sad, Serbia
Abstract views: 156

Abstract

Not available.

Downloads

Download data is not yet available.

References

Avdelas, G.; Hadjidimos, A.; Yeyios, A. Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 5-10, MR0617249.

Cvetković, Ljiljana; Herceg, Dragoslav Some sufficient conditions for convergence of AOR-method. Numerical methods and approximation theory (Niš, 1984), 13-18, Univ. Niš, Niš, 1984, MR0805771.

Cvetković, Ljiljana; Herceg, Dragoslav Some results on M- and H-matrices. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 16 (1986), no. 2, pp. 121-129, MR0939343.

Chernyak, V. Ya. The effect of nonlinearity of a solvable system on the convergence of the Jacobi, SOR- and AOR-Newton methods. (Russian) Numerical methods in analysis and their applications, pp. 139-150, Akad. Nauk SSSR Sibirsk. Otdel., Ènerget. Inst., Irkutsk, 1983, MR0845332.

Dashnic, M.S., Zusmanovich, M.S., O nekotoryh ..... matem. i matem. fiz., 5 (1970), pp. 1092-1097.

Hadjidimos, Apostolos Accelerated overrelaxation method. Math. Comp. 32 (1978), no. 141, pp. 149-157, MR0483340, https://doi.org/10.1090/s0025-5718-1978-0483340-6

Hadjidimos, A.; Yeyios, A. The principle of extrapolation in connection with the accelerated overrelaxation method. Linear Algebra Appl. 30 (1980), pp. 115-128, MR0568784.

Herceg, D. Über die Konvergenz des AOR-Verfahrens. (German) [On the convergence of the AOR method] Z. Angew. Math. Mech. 65 (1985), no. 5, pp. 378-379, MR0799007.

Martins, M. Madalena On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix. Math. Comp. 35 (1980), no. 152, pp. 1269-1273, MR0583503, https://doi.org/10.1090/s0025-5718-1980-0583503-4

Martins, M. Madalena Note on irreducible diagonally dominant matrices and the convergence of the AOR iterative method. Math. Comp. 37 (1981), no. 155, pp. 101-103, MR0616363.

Martins, M. Madalena Generalized diagonal dominance in connection with the accelerated overrelaxation (AOR) method. BIT 22 (1982), no. 1, pp. 73-78, MR0654743, https://doi.org/10.1007/bf01934396

Martins, M. Madalena An improvement for the area of convergence of the accelerated overrelaxation iterative method. Anal. Numér. Théor. Approx. 12 (1983), no. 1, pp. 65-76, MR0743917.

Pupkov, V. A., An isolated eigenvalue of a matrix and the structure of its eigenvector. (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), no. 6, 1304-1313, MR0731236.

Pupkov, V. A., Some sufficient conditions for the nondegeneracy of matrices. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), no. 11, pp. 1733-1737, 1760, MR0773845.

Solov'ev, V. N., Generalization of the Gershgorin theorem. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 6, pp. 1285-1302, MR0727756.

Varga, Richard S. On recurring theorems on diagonal dominance. Collection of articles dedicated to Olga Taussky Todd. Linear Algebra and Appl. 13 (1976), no. 1-2, pp. 1-9, MR0393069, https://doi.org/10.1016/0024-3795(76)90037-9

Downloads

Published

1987-08-01

How to Cite

Cvetković, L. J., & Herceg, D. (1987). Improvement of the area of convergence of the AOR method. Anal. Numér. Théor. Approx., 16(2), 109–115. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1987-vol16-no2-art3

Issue

Section

Articles