Improvement of the area of convergence of the AOR method
Abstract
Not available.Downloads
References
Avdelas, G.; Hadjidimos, A.; Yeyios, A. Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 5-10, MR0617249.
Cvetković, Ljiljana; Herceg, Dragoslav Some sufficient conditions for convergence of AOR-method. Numerical methods and approximation theory (Niš, 1984), 13-18, Univ. Niš, Niš, 1984, MR0805771.
Cvetković, Ljiljana; Herceg, Dragoslav Some results on M- and H-matrices. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 16 (1986), no. 2, pp. 121-129, MR0939343.
Chernyak, V. Ya. The effect of nonlinearity of a solvable system on the convergence of the Jacobi, SOR- and AOR-Newton methods. (Russian) Numerical methods in analysis and their applications, pp. 139-150, Akad. Nauk SSSR Sibirsk. Otdel., Ènerget. Inst., Irkutsk, 1983, MR0845332.
Dashnic, M.S., Zusmanovich, M.S., O nekotoryh ..... matem. i matem. fiz., 5 (1970), pp. 1092-1097.
Hadjidimos, Apostolos Accelerated overrelaxation method. Math. Comp. 32 (1978), no. 141, pp. 149-157, MR0483340, https://doi.org/10.1090/s0025-5718-1978-0483340-6
Hadjidimos, A.; Yeyios, A. The principle of extrapolation in connection with the accelerated overrelaxation method. Linear Algebra Appl. 30 (1980), pp. 115-128, MR0568784.
Herceg, D. Über die Konvergenz des AOR-Verfahrens. (German) [On the convergence of the AOR method] Z. Angew. Math. Mech. 65 (1985), no. 5, pp. 378-379, MR0799007.
Martins, M. Madalena On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix. Math. Comp. 35 (1980), no. 152, pp. 1269-1273, MR0583503, https://doi.org/10.1090/s0025-5718-1980-0583503-4
Martins, M. Madalena Note on irreducible diagonally dominant matrices and the convergence of the AOR iterative method. Math. Comp. 37 (1981), no. 155, pp. 101-103, MR0616363.
Martins, M. Madalena Generalized diagonal dominance in connection with the accelerated overrelaxation (AOR) method. BIT 22 (1982), no. 1, pp. 73-78, MR0654743, https://doi.org/10.1007/bf01934396
Martins, M. Madalena An improvement for the area of convergence of the accelerated overrelaxation iterative method. Anal. Numér. Théor. Approx. 12 (1983), no. 1, pp. 65-76, MR0743917.
Pupkov, V. A., An isolated eigenvalue of a matrix and the structure of its eigenvector. (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), no. 6, 1304-1313, MR0731236.
Pupkov, V. A., Some sufficient conditions for the nondegeneracy of matrices. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), no. 11, pp. 1733-1737, 1760, MR0773845.
Solov'ev, V. N., Generalization of the Gershgorin theorem. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 6, pp. 1285-1302, MR0727756.
Varga, Richard S. On recurring theorems on diagonal dominance. Collection of articles dedicated to Olga Taussky Todd. Linear Algebra and Appl. 13 (1976), no. 1-2, pp. 1-9, MR0393069, https://doi.org/10.1016/0024-3795(76)90037-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.