On some inequalities involving isotonic functionals
Abstract
Not available.Downloads
References
Andrica, Dorin, On a maximum problem. Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), 173-177, Univ. Cluj-Napoca, Cluj-Napoca, 1985, MR0847266.
Andrica, Dorin; Raşa, Ion Nets in M1+(X) and mean value theorems. Seminar on mathematical analysis (Cluj-Napoca, 1985), 7-12, Preprint, 85-7, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0833763.
Andrica, D., Badea, C., Grüss inequality for linear positive functionals, Period. Math. Hungar, https://doi.org/10.1007/bf01848061, (to appear),
Beesack, Paul R.; Pečarić, Josip E., On Jessen's inequality for convex functions. J. Math. Anal. Appl. 110 (1985), no. 2, 536-552, MR0805275, https://doi.org/10.1016/0022-247x(85)90315-4
Jessen, B., Bemaerkinger om knouekse Functioner og Uligheder imellem Middelvaldier I, Mat. Tidsskrift B(1931), pp. 17-28.
Lupaş, Alexandru Some properties of the linear positive operators. III. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 1, 47-61, MR0380204.
Mitrinović, D. S. Analytic inequalities. In cooperation with P. M. Vasić. tseries Die Grundlehren der mathematischen Wissenschaften, Band 165 Springer-Verlag, New York-Berlin 1970 xii+400 pp., MR0274686.
Rădulescu, S., Rădulescu, M., Teoreme şi probleme de analiză numerică, Ed. Didactică şi Pedagogică, Bucureşti, 1982 (in Romanian).
Pečarić, Josip E.(YU-BELGCE); Andrica, Dorin(R-CLUJ) Abstract Jessen's inequality for convex functions and applications. Mathematica (Cluj) 29(52) (1987), no. 1, 61-65, MR0939553.
Pečarić, Josip E., andrica, D., On soem Grüss type inequalities, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1986, pp. 211-214.
Pečarić, Josip E.(YU-BELGCE); Beesack, Paul R.(3-CARL), On Jessen's inequality for convex functions. II., J. Math. Anal. Appl. 118 (1986), no. 1, 125-144, MR0849448, https://doi.org/10.1016/0022-247x(86)90296-9
Volkov, V. I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 115 1957 17-19, MR0094693.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.