On some inequalities involving isotonic functionals

Authors

  • Dorin Andrica Faculty of Mathematics and Physics, Cluj-Napoca, Romania
  • Mihai Onucu Drimbe "Roman Vodă" High Scool, Roman, Romania
Abstract views: 165

Abstract

Not available.

Downloads

Download data is not yet available.

References

Andrica, Dorin, On a maximum problem. Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), 173-177, Univ. Cluj-Napoca, Cluj-Napoca, 1985, MR0847266.

Andrica, Dorin; Raşa, Ion Nets in M1+(X) and mean value theorems. Seminar on mathematical analysis (Cluj-Napoca, 1985), 7-12, Preprint, 85-7, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0833763.

Andrica, D., Badea, C., Grüss inequality for linear positive functionals, Period. Math. Hungar, https://doi.org/10.1007/bf01848061, (to appear),

Beesack, Paul R.; Pečarić, Josip E., On Jessen's inequality for convex functions. J. Math. Anal. Appl. 110 (1985), no. 2, 536-552, MR0805275, https://doi.org/10.1016/0022-247x(85)90315-4

Jessen, B., Bemaerkinger om knouekse Functioner og Uligheder imellem Middelvaldier I, Mat. Tidsskrift B(1931), pp. 17-28.

Lupaş, Alexandru Some properties of the linear positive operators. III. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 1, 47-61, MR0380204.

Mitrinović, D. S. Analytic inequalities. In cooperation with P. M. Vasić. tseries Die Grundlehren der mathematischen Wissenschaften, Band 165 Springer-Verlag, New York-Berlin 1970 xii+400 pp., MR0274686.

Rădulescu, S., Rădulescu, M., Teoreme şi probleme de analiză numerică, Ed. Didactică şi Pedagogică, Bucureşti, 1982 (in Romanian).

Pečarić, Josip E.(YU-BELGCE); Andrica, Dorin(R-CLUJ) Abstract Jessen's inequality for convex functions and applications. Mathematica (Cluj) 29(52) (1987), no. 1, 61-65, MR0939553.

Pečarić, Josip E., andrica, D., On soem Grüss type inequalities, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1986, pp. 211-214.

Pečarić, Josip E.(YU-BELGCE); Beesack, Paul R.(3-CARL), On Jessen's inequality for convex functions. II., J. Math. Anal. Appl. 118 (1986), no. 1, 125-144, MR0849448, https://doi.org/10.1016/0022-247x(86)90296-9

Volkov, V. I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 115 1957 17-19, MR0094693.

Downloads

Published

1988-02-01

How to Cite

Andrica, D., & Drimbe, M. O. (1988). On some inequalities involving isotonic functionals. Anal. Numér. Théor. Approx., 17(1), 1–5. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no1-art1

Issue

Section

Articles