Discrete convexity cones
Abstract
Not available.Downloads
References
Andrica, D., and Toader, Gh., On systems of linear recurrences, "Babeş-Bolyai" Univ., Preprint 7(1986), pp. 5-12.
Guelfond, A. O., Calcul des différences finies. (French) Collection Universitaire de Mathématiques, XII. Traduit par G. Rideau Dunod, Paris 1963 x+378 pp., MR0157139.
Karlin, Samuel; Studden, William J. Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, Vol. XV Interscience Publishers John Wiley & Sons, New York-London-Sydney 1966 xviii+586 pp., MR0204922.
Kotkowski, B.; Waszak, A. An application of Abel's transformation. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), 203-210 (1979), MR0580445.
Lacković, Ivan B.; Kocić, Ljubiša M., Approximation in discrete convexity cones. (Serbo-Croatian summary) Numerical methods and approximation theory (Niš, 1984), 119-123, Univ. Niš, Niš, 1984, MR0805789.
Lacković, Ivan B., Simić, Slobodan K., On weighted arithmetic means which are invariant with respect to k-th order convexity. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461-497 (1974), 159-166, MR0385042.
Lupaş, Alexandru, On convexity preserving matrix transformations. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 189-191, MR0579284.
Milovanović, Igor Ž., Kocić, Ljubiša M., Stanković, Ljubomir R. Invariant transformation of generalized convex sequences. Punime Mat. No. 2 (1987), 17-21, MR0956872.
Milovanović, I. Ž., Pečarić, J. E. Toader, Gh., On p,q-convex sequences. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 127-130, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0842222.
Milovanović, I. Ž., Stojanović, N. M., Kocić, Lj. M.,On representation of a linear operator on the set of starshaped sequences. Facta Univ. Ser. Math. Inform. No. 1 (1986), 39-43, MR0873850.
Milovanović, I. Ž., Stojanović, N. M., Toader, Gh., Pečarić, J. E., On representation of a linear operator on the set of mean-convex sequences. Punime Mat. No. 4 (1989), 3-7, MR1087273.
Mitrinović, D., Kacković, I.B. and Stanković, N.S., On some convex sequences connected with N. Ozeki's results. Univ. Beograd. Publ. Electrotehn. Fak., No.634-677(1979), pp. 3-24.
Pečarić, Josip E.,An inequality for m-convex sequences. Mat. Vesnik 5(18)(33) (1981), no. 2, 201-203, MR0681382.
Popoviciu, Tibere, Les fonctions convexes. (French) Actualités Sci. Ind., no. 992. Hermann et Cie, Paris, 1944. 76 pp., MR0018705.
Toader, Gh., Starshapedness and superadditivity of high order of sequences. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 227-234, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0842243.
Toader, Gh., The resolution of some inequations with finite differences, "Babeş-Bolyai", Univ. Preprint 3(1986), pp. 311-316.
Toader, Gh. Jessen's inequality for sequences. Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), 55-58, Res. Centre, Acad. SR Romania, Timişoara, 1988, MR1005998.
Toader, Gh., On some properties of convex sequences. Mat. Vesnik 38 (1986), no. 1, 103-111, MR0854435.
Toader, G., On the convexity of high order of sequences. Publ. Inst. Math. (Beograd) (N.S.) 43(57) (1988), 35-40, MR0962253.
Toader, Gh.(R-TUCN), Pečarić, J. E., Milovanović, I. Ž., On a general inequality for convex sequences. Seminar on mathematical analysis (Cluj-Napoca, 1985), 57-58, Preprint, 85-7, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0833767.
Vasić, P. M., Kečkić, J. D., Lacković, I. B., Mitrović, Ž. M.. Some properties of arithmetic means of real sequences. Mat. Vesnik 9(24) (1972), 205-212, MR0328413.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.