Improved estimates with the second order modulus of continuity in approximation by linear positive operators
Abstract
Not available.Downloads
References
Alkemade, J. A. H. The second moment for the Meyer-König and Zeller operators. J. Approx. Theory 40 (1984), no. 3, 261-273, MR0736073, https://doi.org/10.1016/0021-9045(84)90067-4
Berens, Hubert; Lorentz, George G. Inverse theorems for Bernstein polynomials. Indiana Univ. Math. J. 21 (1971/72), 693-708, MR0296579, https://doi.org/10.1512/iumj.1972.21.21054
Brudnyi, Yu A., On a method of approximation of bounded fucntions defined in an interval (in Russian), in: Studies in Conteporanry Problems. Constructive Theory of Functions, Proc. Second All-Union Conference, Baku, 1962, I.I. Ibragimov, ed., Izdat. Akad. Nauk Azerbaidzan. SSR. Baku, 1965, pp. 40-45.
Gonska, H., Quantitative Aussagen zur Approximation durch positive linear Operatoren, Dissertation, Universität Duisburg, 1979.
Gonska, Heinz H. On approximation by linear operators: improved estimates. Anal. Numér. Théor. Approx. 14 (1985), no. 1, pp. 7-32, MR0830510.
Păltănea, Radu, L'estimation de l'approximation des fonctions continues par les opérateurs de Brass. (French) [Estimating the approximation of continuous functions by Brass operators] Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984), 123-126, Preprint, 84-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1984, MR0788734.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.