Improved estimates with the second order modulus of continuity in approximation by linear positive operators

Authors

  • Radu Păltănea University of Braşov, Romania
Abstract views: 154

Abstract

Not available.

Downloads

Download data is not yet available.

References

Alkemade, J. A. H. The second moment for the Meyer-König and Zeller operators. J. Approx. Theory 40 (1984), no. 3, 261-273, MR0736073, https://doi.org/10.1016/0021-9045(84)90067-4

Berens, Hubert; Lorentz, George G. Inverse theorems for Bernstein polynomials. Indiana Univ. Math. J. 21 (1971/72), 693-708, MR0296579, https://doi.org/10.1512/iumj.1972.21.21054

Brudnyi, Yu A., On a method of approximation of bounded fucntions defined in an interval (in Russian), in: Studies in Conteporanry Problems. Constructive Theory of Functions, Proc. Second All-Union Conference, Baku, 1962, I.I. Ibragimov, ed., Izdat. Akad. Nauk Azerbaidzan. SSR. Baku, 1965, pp. 40-45.

Gonska, H., Quantitative Aussagen zur Approximation durch positive linear Operatoren, Dissertation, Universität Duisburg, 1979.

Gonska, Heinz H. On approximation by linear operators: improved estimates. Anal. Numér. Théor. Approx. 14 (1985), no. 1, pp. 7-32, MR0830510.

Păltănea, Radu, L'estimation de l'approximation des fonctions continues par les opérateurs de Brass. (French) [Estimating the approximation of continuous functions by Brass operators] Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984), 123-126, Preprint, 84-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1984, MR0788734.

Downloads

Published

1988-08-01

How to Cite

Păltănea, R. (1988). Improved estimates with the second order modulus of continuity in approximation by linear positive operators. Anal. Numér. Théor. Approx., 17(2), 171–179. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no2-art10

Issue

Section

Articles