On the monotonicity of sequences of Bernstein-Schnabl operators

Authors

  • I. Raşa Polytechnic Institute, Cluj-Napoca, Romania
Abstract views: 242

Abstract

Not available.

Downloads

References

Aramă, O. Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8(1957), pp. 195-210, MR0124674.

Grossman, Marvin W., Note on a generalized Bohman-Korovkin theorem. Math. Anal. Appl. 45 (1974), 43-46, MR0336171, https://doi.org/10.1016/0022-247x(74)90118-8

Reviewed Horová, Ivana Bernstein polynomials of convex functions. Mathematica (Cluj) 10 (33) (1968), 265-273, MR0246025.

Jakimovski, Amnon Generalized Bernstein polynomials for discontinuous and convex functions. J. Analyse Math. 23 (1970), pp. 171-183, MR0270033, https://doi.org/10.1007/bf02795498

Kosmák, Ladislav, A note on Bernstein polynomials of convex functions. Mathematica (Cluj) 2 (25) (1960), pp. 281-282, MR0125921.

Lupaş, Alexandru Some properties of the linear positive operators. III. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 1, pp. 47-61, MR0380204.

Moldovan, Elena, Observations sur la suite des polynomes de S. N. Bernstein d'une fonction continue. (French) Mathematica (Cluj) 4 (27)(1962), pp. 289-292, MR0164178.

Raşa, I. Sets on which concave functions are affine and Korovkin closures. Anal. Numér. Théor. Approx. 15 (1986), no. 2, pp. 163-165, MR0889526.

Raşa, I. Generalized Bernstein operators and convex functions. Studia Univ. Babeş-Bolyai Math. 33 (1988), no. 2, pp. 36-39, MR1004816.

Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernšteĭn polynomials. Calcolo 16 (1979), no. 4, pp. 431-445 (1980), MR0592481, https://doi.org/10.1007/bf02576641

Temple, W. B. Stieltjes integral representation of convex functions. Duke Math. J. 21, (1954), pp. 527-531, MR0062815, https://doi.org/10.1215/s0012-7094-54-02152-3

Volkov, Yu. Ī. Multidimensional approximation operators generated by Lebesgue-Stieltjes measures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, pp. 435-454, MR0703592.

Volkov, Yu. I., Monotonicity of sequences of positive linear operators generated by measures. (Russian) Mat. Zametki 38 (1985), no. 5, pp. 658-664, 795, MR0819623.

Ziegler, Zvi Linear approximation and generalized convexity. J. Approximation Theory 1 (1968), pp. 420-443, MR0240525, https://doi.org/10.1016/0021-9045(68)90031-2

Downloads

Published

1988-08-01

Issue

Section

Articles

How to Cite

Raşa, I. (1988). On the monotonicity of sequences of Bernstein-Schnabl operators. Anal. Numér. Théor. Approx., 17(2), 185-187. https://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no2-art12