On the monotonicity of sequences of Bernstein-Schnabl operators
Abstract
Not available.Downloads
References
Aramă, O. Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8(1957), pp. 195-210, MR0124674.
Grossman, Marvin W., Note on a generalized Bohman-Korovkin theorem. Math. Anal. Appl. 45 (1974), 43-46, MR0336171, https://doi.org/10.1016/0022-247x(74)90118-8
Reviewed Horová, Ivana Bernstein polynomials of convex functions. Mathematica (Cluj) 10 (33) (1968), 265-273, MR0246025.
Jakimovski, Amnon Generalized Bernstein polynomials for discontinuous and convex functions. J. Analyse Math. 23 (1970), pp. 171-183, MR0270033, https://doi.org/10.1007/bf02795498
Kosmák, Ladislav, A note on Bernstein polynomials of convex functions. Mathematica (Cluj) 2 (25) (1960), pp. 281-282, MR0125921.
Lupaş, Alexandru Some properties of the linear positive operators. III. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 1, pp. 47-61, MR0380204.
Moldovan, Elena, Observations sur la suite des polynomes de S. N. Bernstein d'une fonction continue. (French) Mathematica (Cluj) 4 (27)(1962), pp. 289-292, MR0164178.
Raşa, I. Sets on which concave functions are affine and Korovkin closures. Anal. Numér. Théor. Approx. 15 (1986), no. 2, pp. 163-165, MR0889526.
Raşa, I. Generalized Bernstein operators and convex functions. Studia Univ. Babeş-Bolyai Math. 33 (1988), no. 2, pp. 36-39, MR1004816.
Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernšteĭn polynomials. Calcolo 16 (1979), no. 4, pp. 431-445 (1980), MR0592481, https://doi.org/10.1007/bf02576641
Temple, W. B. Stieltjes integral representation of convex functions. Duke Math. J. 21, (1954), pp. 527-531, MR0062815, https://doi.org/10.1215/s0012-7094-54-02152-3
Volkov, Yu. Ī. Multidimensional approximation operators generated by Lebesgue-Stieltjes measures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, pp. 435-454, MR0703592.
Volkov, Yu. I., Monotonicity of sequences of positive linear operators generated by measures. (Russian) Mat. Zametki 38 (1985), no. 5, pp. 658-664, 795, MR0819623.
Ziegler, Zvi Linear approximation and generalized convexity. J. Approximation Theory 1 (1968), pp. 420-443, MR0240525, https://doi.org/10.1016/0021-9045(68)90031-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.