On quadratic equations
Abstract
Not available.Downloads
References
Ioannis K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc. 32 (1985), no. 2, 275-292, MR0815369, https://doi.org/10.1017/s0004972700009953
I. K. Argyros, On a class of nonlinear integral equations arising in neutron transport, Aequationes Matyhematicae, 35 (1988), pp. 29-49.
Baruch Cahlon, Numerical solution of nonlinear Volterra integral equations. J. Comput. Appl. Math. 7 (1981), no. 2, 121-128, MR0636006, https://doi.org/10.1016/0771-050x(81)90045-0
Kenneth M. Case, Paul F. Zweifel, Linear transport theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1967 ix+342 pp., MR0225547.
S. Chandrasekhar, Radiative transfer. Dover Publications, Inc., New York 1960 xiv+393 pp., MR0111583.
C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton's method. J. Math. Phys. 21 (1980), no. 7, 1625-1628, MR0575595, https://doi.org/10.1063/1.524647
C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), pp. 301-309.
R. W. Legget, On certain nonlinear integral equations, J. Math. Anal. Appl., 57 (1977), pp. 462-468. (1930), pp. 301-309, https://doi.org/10.1016/0022-247x(77)90272-4
J. E. McFarland, An iterative solution of the quadratic equation in Banach space. Proc. Amer. Math. Soc. 9 1958, pp. 824-830, MR0096147, https://doi.org/10.1090/s0002-9939-1958-0096147-8
L. B. Rall, Quadratic equations in Banach spaces. Rend. Circ. Mat. Palermo (2) 10 1961 314-332, MR0144184, https://doi.org/10.1007/bf02843677
L. B. Rall, Computational solution of nonlinear operator equations, John Wiley Publ., New York, 1968.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.