On quadratic equations

Authors

  • Ioannis K. Argyros New Mexico, USA
Abstract views: 202

Abstract

Not available.

Downloads

References

Ioannis K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc. 32 (1985), no. 2, 275-292, MR0815369, https://doi.org/10.1017/s0004972700009953

I. K. Argyros, On a class of nonlinear integral equations arising in neutron transport, Aequationes Matyhematicae, 35 (1988), pp. 29-49.

Baruch Cahlon, Numerical solution of nonlinear Volterra integral equations. J. Comput. Appl. Math. 7 (1981), no. 2, 121-128, MR0636006, https://doi.org/10.1016/0771-050x(81)90045-0

Kenneth M. Case, Paul F. Zweifel, Linear transport theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1967 ix+342 pp., MR0225547.

S. Chandrasekhar, Radiative transfer. Dover Publications, Inc., New York 1960 xiv+393 pp., MR0111583.

C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton's method. J. Math. Phys. 21 (1980), no. 7, 1625-1628, MR0575595, https://doi.org/10.1063/1.524647

C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), pp. 301-309.

R. W. Legget, On certain nonlinear integral equations, J. Math. Anal. Appl., 57 (1977), pp. 462-468. (1930), pp. 301-309, https://doi.org/10.1016/0022-247x(77)90272-4

J. E. McFarland, An iterative solution of the quadratic equation in Banach space. Proc. Amer. Math. Soc. 9 1958, pp. 824-830, MR0096147, https://doi.org/10.1090/s0002-9939-1958-0096147-8

L. B. Rall, Quadratic equations in Banach spaces. Rend. Circ. Mat. Palermo (2) 10 1961 314-332, MR0144184, https://doi.org/10.1007/bf02843677

L. B. Rall, Computational solution of nonlinear operator equations, John Wiley Publ., New York, 1968.

Downloads

Published

1989-02-01

Issue

Section

Articles

How to Cite

Argyros, I. K. (1989). On quadratic equations. Anal. Numér. Théor. Approx., 18(1), 19-26. https://ictp.acad.ro/jnaat/journal/article/view/1989-vol18-no1-art3