Local representation of distance functional on smooth normed linear spaces
Abstract
Not available.Downloads
References
G. Dincă, Metode variaţionale şi aplicaţii, Ed. Tehnică, Bucureşti, 1980.
S. S. Dragomir, Representation of continuous linear functionals on smooth reflexive Banach spaces, L'Analyse numérique et la théorie de l'approximation, 16, 1 (1987), pp., 19-28.
S. S. Dragomir, O caracterizare a elementului de cea mai bună aproximaţie în spaţii normate real, Stud. Cerc. Mat., 36 (1987), pp. 497-508 (in Romanian).
S. S. Dragomir, Representation of continuous linear functionals on smooth normed linear spaces, L'Analyse numérique et la théorie de l'approximation (to appear).
G. Lumer, Semi-inner product spaces, Trans. Amer. Math. Soc., 100 (1961), pp. 29-43, https://doi.org/10.1090/s0002-9947-1961-0133024-2
M. Nicolescu, Sur la meillure approximation d'une fonction donnée par les fonctions d'une famille donnée, Bul. Fac. Sti. Cernăuţi, 12 (1938), pp. 120-128.
I. Roşca, Semi-produits scalaires et représentation du type Riesz pour les fonctionnélles linéaire et bornées sur les éspaces normés., C.R. Acad. Sci. Paris, 283 (19), 1976.
I. Singer, Cea mai bună aproximare în spaţii vectoriale normate prin elemente di subspaţii vectoriale. Ed. Acad., Bucureşti, 1967 (in Romanian).
R. A. Tapia, A characterization of inner product, Proc. Amer. Math. Soc., 41 (1973), pp. 569-574, https://doi.org/10.1090/s0002-9939-1973-0341041-6
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.