A class of semi-inner products and applications (I)
Abstract
Not available.Downloads
References
G. Dincă, Variational Methods and Applications (Romanian), Ed. Tehnică Bucureşti, 1980 (in Romanian).
S. S. Dragomir, A characterization of elements of best approximation in real normed spaces. (Romanian) Stud. Cerc. Mat. 39 (1987), no. 6, 497-506, MR0925392.
S. S. Dragomir, Representation of continuous linear functionals on smooth reflexive Banach spaces. Anal. Numér. Théor. Approx. 16 (1987), no. 1, 19-28, MR0938779.
S. S. Dragomir, Representation of continuous linear functionals on smooth normed linear spaces, L'Analyse Numérique et la Théorie de L'Approximation, 17 (1988).
G. Lumer, Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 1961 29-43, MR0133024, https://doi.org/10.1090/s0002-9947-1961-0133024-2
M. Pavel, Differential Equaitons Associated to Some Nonlinear Operators on Banach Spaces (Romanian), Ed. Acad., Bucureşti, 1977.
R. A. Tapia , A characterization of inner product spaces. Proc. Amer. Math. Soc. 41 (1973), 569-574, MR0341041, https://doi.org/10.1090/s0002-9939-1973-0341041-6
I. Singer, Cea mai bună aproximare în spaţii vectoriale normate prin elemente din subspaţii vectoriale. (Romanian) [Best approximation in normed vector spaces by elements of vector subspaces] Editura Academiei Republicii Socialiste România, Bucharest 1967 386 pp., MR0235368.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.